Chang Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4212358/publications.pdf

Version: 2024-02-01

623734 752698 21 654 14 20 h-index citations g-index papers 21 21 21 816 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A mesoporous conjugated polymer based on a high free radical density polytriphenylamine derivative: its preparation and electrochemical performance as a cathode material for Li-ion batteries. Journal of Materials Chemistry A, 2017, 5, 2701-2709.	10.3	86
2	Synthesis and properties of novel TEMPO-contained polypyrrole derivatives as the cathode material of organic radical battery. Electrochimica Acta, 2014, 130, 148-155.	5.2	74
3	Nonenzymatic Electrochemical Glucose Sensor Based on Pt Nanoparticles/Mesoporous Carbon Matrix. Electroanalysis, 2010, 22, 1901-1905.	2.9	71
4	Polytriphenylamine derivative with high free radical density as the novel organic cathode for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 20083-20088.	10.3	71
5	Synthesis and charge–discharge properties of a ferrocene-containing polytriphenylamine derivative as the cathode of a lithium ion battery. Journal of Materials Chemistry, 2012, 22, 22658.	6.7	59
6	Synthesis of a novel ferrocene-contained polypyrrole derivative and its performance as a cathode material for Li-ion batteries. Electrochimica Acta, 2013, 104, 302-307.	5.2	48
7	Conjugated microporous polymer based on star-shaped triphenylamine-benzene structure with improved electrochemical performances as the organic cathode material of Li-ion battery. Electrochimica Acta, 2018, 286, 187-194.	5.2	37
8	Effect of trace hydrofluoric acid in a LiPF ₆ electrolyte on the performance of a Li–organic battery with an N-heterocycle based conjugated microporous polymer as the cathode. Journal of Materials Chemistry A, 2019, 7, 16347-16355.	10.3	31
9	Microâ€/Mesoporous conjugated polymer based on starâ€shaped triazineâ€functional triphenylamine framework as the performanceâ€improved cathode of Liâ€organic battery. Journal of Polymer Science Part A, 2018, 56, 2574-2583.	2.3	24
10	Novel Eu-containing titania composites derived from a new Eu(<scp>iii</scp>)-doped polyoxotitanate cage. RSC Advances, 2016, 6, 57-60.	3 . 6	21
11	A novel ferrocene-containing aniline copolymer: its synthesis and electrochemical performance. RSC Advances, 2015, 5, 14053-14060.	3.6	20
12	Preparation of TEMPO-contained pyrrole copolymer by in situ electrochemical polymerization and its electrochemical performances as cathode of lithium ion batteries. Ionics, 2017, 23, 1375-1382.	2.4	19
13	Enhanced electrochromic switching speed and electrochemical stability of conducting polymer film on an ionic liquid functionalized ITO electrode. New Journal of Chemistry, 2015, 39, 5329-5335.	2.8	18
14	Dynamic mechanical properties of semiâ€interpenetrating polymer networkâ€based on nitrile rubber and poly(methyl methacrylateâ€ <i>co</i> â€butyl acrylate). Journal of Applied Polymer Science, 2014, 131, .	2.6	16
15	A polytriphenylamine derivative exhibiting a four-electron redox center as a high free radical density organic cathode. RSC Advances, 2016, 6, 22989-22995.	3.6	15
16	Preparation of supported core–shell structured Pd@Pd _x S _y /C catalysts for use in selective reductive alkylation reaction. RSC Advances, 2015, 5, 66278-66285.	3.6	14
17	Study of the orientationâ€controlled damping temperature based on selective distribution of oligoâ€phenol in acrylate rubber/chlorinated butyl rubber blends. Polymer Composites, 2012, 33, 860-865.	4.6	8
18	Preparation of Poly(arylaminoâ€quinone) Polymer and Its Electrochemical Properties as a Cathode Material for Lithium Ion Battery. ChemistrySelect, 2021, 6, 4725-4735.	1.5	8

CHANG Su

#	Article	IF	CITATIONS
19	A Novel Anthraquinoneâ€Containing Poly(Triphenylamine) Derivative: Preparation and Electrochemical Performance as Cathode for Lithiumâ€ion Batteries. ChemElectroChem, 2020, 7, 4101-4107.	3.4	7
20	Effect of cross-linking on electrochemical performances of polyaniline as the cathode material of lithium-ion batteries. Polymer Bulletin, 2022, 79, 5261-5278.	3.3	7
21	Synthesis and Properties of Novel Sulfideâ€Containing Aniline Copolymers as a Cathode Material for Liâ€lon Batteries. Macromolecular Chemistry and Physics, 2011, 212, 2487-2492.	2.2	O