
Fengxiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4212182/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Imidazolium functionalized polysulfone anion exchange membrane for fuel cell application. Journal of Materials Chemistry, 2011, 21, 12744.	6.7	281
2	A mini-review on anion exchange membranes forÂfuel cell applications: Stability issue and addressing strategies. International Journal of Hydrogen Energy, 2015, 40, 7348-7360.	7.1	260
3	Advanced charged membranes with highly symmetric spongy structures for vanadium flow battery application. Energy and Environmental Science, 2013, 6, 776.	30.8	123
4	Facile Synthesis of Heterostructured MoS ₂ –MoO ₃ Nanosheets with Active Electrocatalytic Sites for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2021, 15, 20478-20488.	14.6	115
5	A high-performance anion exchange membrane based on bi-guanidinium bridged polysilsesquioxane for alkaline fuel cell application. Journal of Materials Chemistry, 2012, 22, 8203.	6.7	91
6	Facile Formation of a Solid Electrolyte Interface as a Smart Blocking Layer for High‣tability Sulfur Cathode. Advanced Materials, 2017, 29, 1700273.	21.0	83
7	Bent-twisted block copolymer anion exchange membrane with improved conductivity. Journal of Membrane Science, 2018, 550, 59-71.	8.2	64
8	An integrally thin skinned asymmetric architecture design for advanced anion exchange membranes for vanadium flow batteries. Journal of Materials Chemistry A, 2015, 3, 16948-16952.	10.3	59
9	Guanidimidazole-quanternized and cross-linked alkaline polymer electrolyte membrane for fuel cell application. Journal of Membrane Science, 2016, 501, 100-108.	8.2	56
10	A Mn ₃ O ₄ nano-wall array based binder-free cathode for high performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 6447-6454.	10.3	55
11	PTFE based composite anion exchange membranes: thermally induced in situ polymerization and direct hydrazine hydrate fuel cell application. Journal of Materials Chemistry, 2010, 20, 8139.	6.7	53
12	Hydrophilic Flexible Ether Containing, Cross-Linked Anion-Exchange Membrane Quaternized with DABCO. ACS Applied Materials & Interfaces, 2020, 12, 3510-3521.	8.0	53
13	Branched, Side-Chain Grafted Polyarylpiperidine Anion Exchange Membranes for Fuel Cell Application. ACS Applied Energy Materials, 2021, 4, 6957-6967.	5.1	50
14	A heterostuctured Co3S4/MnS nanotube array as a catalytic sulfur host for lithium–sulfur batteries. Electrochimica Acta, 2020, 330, 135311.	5.2	47
15	Side-chain manipulation of poly (phenylene oxide) based anion exchange membrane: Alkoxyl extender integrated with flexible spacer. Journal of Membrane Science, 2021, 624, 119088.	8.2	47
16	Anion exchange membrane with a novel quaternized ammonium containing long ether substituent. Journal of Membrane Science, 2019, 581, 293-302.	8.2	45
17	A Dication Crossâ€Linked Composite Anionâ€Exchange Membrane for Allâ€Vanadium Flow Battery Applications. ChemSusChem, 2013, 6, 2290-2298.	6.8	44
18	Influence of Solvent on Polymer Prequaternization toward Anion-Conductive Membrane Fabrication for All-Manadium Flow Battery, Journal of Physical Chemistry B, 2012, 116, 9016-9022	2.6	41

FENGXIANG ZHANG

#	Article	IF	CITATIONS
19	Nitrogen-Doped Porous Carbon Networks with Active Fe–N <i>_x</i> Sites to Enhance Catalytic Conversion of Polysulfides in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 31860-31868.	8.0	39
20	Cyclodextrin modified, multication cross-linked high performance anion exchange membranes for fuel cell application. Journal of Membrane Science, 2020, 607, 118190.	8.2	38
21	Facile fabrication of amphoteric semi-interpenetrating network membranes for vanadium flow battery applications. Journal of Energy Chemistry, 2018, 27, 1189-1197.	12.9	36
22	Octopus-like side chain grafted poly(arylene piperidinium) membranes for fuel cell application. Journal of Membrane Science, 2021, 636, 119529.	8.2	34
23	Hierarchical sulfur confinement by graphene oxide wrapped, walnut-like carbon spheres for cathode of Li-S battery. Journal of Alloys and Compounds, 2017, 714, 311-317.	5.5	32
24	Blend anion exchange membranes containing polymer of intrinsic microporosity for fuel cell application. Journal of Membrane Science, 2020, 595, 117541.	8.2	32
25	Core–Shell Structured <i>o</i> -LiMnO ₂ @Li ₂ CO ₃ Nanosheet Array Cathode for High-Performance, Wide-Temperature-Tolerance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 16116-16124.	8.0	31
26	Electron regulation enabled selective lithium deposition for stable anodes of lithium-metal batteries. Journal of Materials Chemistry A, 2019, 7, 2184-2191.	10.3	30
27	Etch-evaporation enabled defect engineering to prepare high-loading Mn single atom catalyst for Li-S battery applications. Chemical Engineering Journal, 2022, 442, 136258.	12.7	30
28	Block copolymer anion exchange membrane containing polymer of intrinsic microporosity for fuel cell application. International Journal of Hydrogen Energy, 2021, 46, 2269-2281.	7.1	28
29	A modified hierarchical porous carbon for lithium/sulfur batteries with improved capacity and cycling stability. Journal of Solid State Electrochemistry, 2013, 17, 2243-2250.	2.5	25
30	Synthesis of quaternary phosphonium N-chloramine biocides for antimicrobial applications. RSC Advances, 2017, 7, 13244-13249.	3.6	25
31	"Room-like―TiO ₂ Array as a Sulfur Host for Lithium-Sulfur Batteries: Combining Advantages of Array and Closed Structures. ACS Sustainable Chemistry and Engineering, 2020, 8, 7609-7616.	6.7	24
32	Oxygen vacancy enabled fabrication of dual-atom Mn/Co catalysts for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 11702-11711.	10.3	24
33	A N,S-codoped hierarchical carbon Foam@Porous carbon composite as freestanding cathode for high-performance lithium-sulfur batteries. Journal of Alloys and Compounds, 2018, 768, 495-502.	5.5	23
34	Dual-Side-Chain-Grafted Poly(phenylene oxide) Anion Exchange Membranes for Fuel-Cell and Electrodialysis Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 8611-8622.	6.7	23
35	Hybrid anion exchange membrane of hydroxyl-modified polysulfone incorporating guanidinium-functionalized graphene oxide. lonics, 2017, 23, 3085-3096.	2.4	22
36	Quaternized polymer binder for lithium–sulfur batteries: The effect of cation structure on battery performance. Journal of Energy Chemistry, 2020, 43, 165-172.	12.9	22

FENGXIANG ZHANG

#	Article	IF	CITATIONS
37	Cyclodextrin templated nanoporous anion exchange membrane for vanadium flow battery application. Journal of Membrane Science, 2019, 586, 98-105.	8.2	21
38	Imidazolium functionalized polysulfone electrolyte membranes with varied chain structures: a comparative study. RSC Advances, 2016, 6, 31336-31346.	3.6	20
39	Side chain hydrolysis method to prepare nanoporous membranes for vanadium flow battery application. Journal of Membrane Science, 2018, 560, 67-76.	8.2	20
40	Hydrophilic–Hydrophobic Bulky Units Modified Anion Exchange Membranes for Fuel Cell Application. ACS Sustainable Chemistry and Engineering, 2022, 10, 5748-5757.	6.7	19
41	Li4Ti5O12 nanowire array as a sulfur host for high performance lithium sulfur battery. Journal of Alloys and Compounds, 2019, 805, 873-879.	5.5	18
42	Synthesis of novel pyridinium <scp><i>N</i></scp> â€chloramine precursors and its antimicrobial application on cotton fabrics. Journal of Applied Polymer Science, 2017, 134, 45323.	2.6	17
43	Facile and green fabrication of polybenzoxazine-based composite anion-exchange membranes with a self-cross-linked structure. Ionics, 2018, 24, 3053-3063.	2.4	16
44	Novel Synergistic Strategy for Developing High-Performance Lithium Sulfur Batteries of Large Areal Sulfur Loading by SEI Modified Separator. ACS Applied Energy Materials, 2018, 1, 932-940.	5.1	15
45	Partially fluorinated, multication cross-linked poly(arylene piperidinium) membranes with improved conductivity and reduced swelling for fuel cell application. Ionics, 2020, 26, 5617-5627.	2.4	15
46	Sulfonated covalent organic framework modified separators suppress the shuttle effect in lithium-sulfur batteries. Nanotechnology, 2021, 32, 275708.	2.6	15
47	Competing reduction induced homogeneous oxygen doping to unlock MoS2 basal planes for faster polysulfides conversion. Journal of Energy Chemistry, 2022, 73, 26-34.	12.9	15
48	Hierarchical, nitrogenous hollow carbon spheres filled with porous carbon nanosheets for use as efficient sulfur hosts for lithium-sulfur batteries. Journal of Alloys and Compounds, 2020, 836, 155295.	5.5	14
49	Nitrogen-doped hollow porous carbon nanospheres coated with MnO ₂ nanosheets as excellent sulfur hosts for Li–S batteries. Nanotechnology, 2017, 28, 475401.	2.6	13
50	Graphene Oxide Induced Growth of Nitrogenâ€Đoped Carbon Nanotubes as a 1D/2D Composite for Highâ€Performance Lithium‧ulfur Batteries. ChemElectroChem, 2019, 6, 1115-1121.	3.4	13
51	Stable alkoxy chain enhanced anion exchange membrane and its fuel cell. Journal of Membrane Science, 2022, 644, 120179.	8.2	13
52	Metal–Organic Framework-Derived NiSe ₂ Nanoparticles on Graphene for Polysulfide Conversion in Lithium–Sulfur Batteries. ACS Applied Nano Materials, 2022, 5, 7402-7409.	5.0	13
53	Highly branched side chain grafting for enhanced conductivity and robustness of anion exchange membranes. Ionics, 2018, 24, 189-199.	2.4	12
54	Complementary side chain promotes microphase separation in the membranes for alkali fuel cells. Polymer, 2022, 238, 124403.	3.8	5

#	Article	IF	CITATIONS
55	Allyl group-enabled side chain grafting for anion exchange membrane fabrication. Ionics, 2020, 26, 1939-1950.	2.4	4