List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4212169/publications.pdf Version: 2024-02-01

7ньналс IIN

#	Article	lF	CITATIONS
1	Hexagonal CdS single crystals coupled with layered CoAl LDH—a step-scheme heterojunction for efficient photocatalytic hydrogen evolution. Journal of Sol-Gel Science and Technology, 2023, 107, 70-82.	2.4	4
2	Synergistic Effect of Bimetallic Sulfide Enhances the Performance of CdS Photocatalytic Hydrogen Evolution. Advanced Sustainable Systems, 2023, 7, .	5.3	28
3	Hierarchically Grown Ni–Mo–S Modified 2D CeO2 for High-Efficiency Photocatalytic Hydrogen Evolution. Catalysis Letters, 2022, 152, 931-943.	2.6	6
4	Unique ternary Ni-MOF-74/Ni2P/MoSx composite for efficient photocatalytic hydrogen production: Role of Ni2P for accelerating separation of photogenerated carriers. Journal of Colloid and Interface Science, 2022, 605, 385-397.	9.4	68
5	Metal organic framework-derived Co3O4/NiCo2O4 hollow double-shell polyhedrons for effective photocatalytic hydrogen generation. Applied Surface Science, 2022, 571, 151288.	6.1	27
6	ZnCdS/NiAl hydrotalcite S-scheme heterojunction for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 292-304.	7.1	36
7	2D/3D ZIFâ€9/Mo ₁₅ S ₁₉ Sâ€Scheme Heterojunction for Productive Photocatalytic Hydrogen Evolution. Energy Technology, 2022, 10, 2100669.	3.8	4
8	Engineering a NiAl-LDH/CoSx S-Scheme heterojunction for enhanced photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 609, 686-697.	9.4	34
9	Hollow tubular Co9S8 grown on In2O3 to form S-scheme heterojunction for efficient and stable hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 1669-1682.	7.1	24
10	MoC quantum dots embedded in ultra-thin carbon film coupled with 3D porous g-C3N4 for enhanced visible-light-driven hydrogen evolution. Applied Catalysis A: General, 2022, 630, 118457.	4.3	13
11	Interface engineering: Synergism between S-scheme heterojunctions and Mo-O bonds for promote photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2022, 609, 212-223.	9.4	28
12	Construction of a tandem S-scheme GDY/CuI/CdS-R heterostructure based on morphology-regulated graphdiyne (g-C _{<i>n</i>} H _{2<i>n</i>å^²2}) for enhanced photocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2022, 10, 1976-1991.	10.3	58
13	Novel CuBr-assisted graphdiyne synthesis strategy and application for efficient photocatalytic hydrogen evolution. Journal of Materials Chemistry C, 2022, 10, 2181-2193.	5.5	28
14	Co3O4 modified Mn0.2Cd0.8S with different shells forms p-n heterojunction to optimize energy/mass transfer for efficient photocatalytic hydrogen evolution. Separation and Purification Technology, 2022, 285, 120318.	7.9	17
15	NiO and Co1.29Ni1.71O4 derived from NiCo LDH form S-scheme heterojunction for efficient photocatalytic hydrogen evolution. Journal of Alloys and Compounds, 2022, 904, 164041.	5.5	18
16	Etching C ₆ CoK ₃ N ₆ -induced ZnCdS for improved hydrogen evolution. Sustainable Energy and Fuels, 2022, 6, 408-419.	4.9	13
17	Lotus-leaf-like Bi2O2CO3 nanosheet combined with Mo2S3 for higher photocatalytic hydrogen evolution. Separation and Purification Technology, 2022, 288, 120588.	7.9	79
18	Synergistic effect of the MoO ₂ /CeO ₂ S-scheme heterojunction on carbon rods for enhanced photocatalytic hydrogen evolution. Dalton Transactions, 2022, 51, 2912-2922.	3.3	22

#	Article	IF	CITATIONS
19	<scp>ZIF</scp> â€67 derived hollow doubleâ€shell core <scp> Co ₃ O ₄ </scp> modified <scp> gâ€C ₃ N ₄ </scp> to construct pâ€n heterojunction for efficient photocatalytic hydrogen evolution. International Journal of Energy Research, 2022, 46, 7479-7494.	4.5	11
20	NiAl‣DH In‣itu Derived Ni ₂ P and ZnCdS Nanoparticles Ingeniously Constructed S‣cheme Heterojunction for Photocatalytic Hydrogen Evolution. ChemCatChem, 2022, 14, .	3.7	65
21	ZIF-67 derived hierarchical hollow Co ₃ S ₄ @Mo ₂ S ₃ dodecahedron with an S-scheme surface heterostructure for efficient photocatalytic hydrogen evolution. Catalysis Science and Technology, 2022, 12, 1144-1158.	4.1	21
22	Phosphorus modified Ni-MOF–74/BiVO4 S-scheme heterojunction for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2022, 307, 121166.	20.2	106
23	Efficient photocatalytic hydrogen evolution over graphdiyne boosted with a cobalt sulfide formed S-scheme heterojunction. Chinese Journal of Catalysis, 2022, 43, 303-315.	14.0	175
24	2D CeO ₂ and a Partially Phosphated 2D Ni-Based Metal–Organic Framework Formed an S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution. Langmuir, 2022, 38, 2117-2131.	3.5	119
25	Rational Design of a Novel S-Scheme Heterojunction based on ZIF-67-Supported Ni-Fe Layered Double Hydroxide for Efficient Photocatalytic Hydrogen Generation. Energy & Fuels, 2022, 36, 2058-2067.	5.1	13
26	Phosphating MIL-53(Fe) as cocatalyst modified porous NiTiO3 for photocatalytic hydrogen production. Renewable Energy, 2022, 188, 132-144.	8.9	6
27	Design and Preparation of a CeVO ₄ /Zn _{0.5} Cd _{0.5} S S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 2474-2483.	5.1	35
28	Graphdiyne based GDY/CuI/NiO parallel double S-scheme heterojunction for efficient photocatalytic hydrogen evolution. 2D Materials, 2022, 9, 025014.	4.4	28
29	Spatially separated catalytic sites supplied with the CdS–MoS ₂ –In ₂ O ₃ ternary dumbbell S-scheme heterojunction for enhanced photocatalytic hydrogen production. Journal of Materials Chemistry A, 2022, 10, 10715-10728.	10.3	37
30	Bridging Effect of S–C Bond for Boosting Electron Transfer over Cubic Hollow CoS/g-C ₃ N ₄ Heterojunction toward Photocatalytic Hydrogen Production. Langmuir, 2022, 38, 3244-3256.	3.5	78
31	Construct 3D NiCo-LDH/Cu2O p-n heterojunction via electrostatic self-assembly for enhanced photocatalytic hydrogen evolution. Journal of Industrial and Engineering Chemistry, 2022, 110, 491-502.	5.8	47
32	Regulation on MoO2/MnO·2CdO·8S S-scheme heterojunction for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 11561-11573.	7.1	21
33	ZIF-67 dodecahedron coupled with CoAl-layered double hydroxide as S-scheme heterojunction for efficient visible-light-driven hydrogen evolution. Applied Surface Science, 2022, 592, 153300.	6.1	24
34	CoV-LDH and Zn <i>_x</i> Cd _{1–<i>x</i>} S Solid-Solution Construct 0D/3D S-Scheme Heterojunction for Activated Solar Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 5064-5075.	5.1	4
35	Activating and optimizing the MoS2@MoO3 S-scheme heterojunction catalyst through interface engineering to form a sulfur-rich surface for photocatalyst hydrogen evolution. Chemical Engineering Journal, 2022, 438, 135238.	12.7	49
36	EDA-assisted synthesis of multifunctional snowflake-Cu2S/CdZnS S-scheme heterojunction for improved the photocatalytic hydrogen evolution. Journal of Materials Science and Technology, 2022, 121, 28-39.	10.7	126

#	Article	IF	CITATIONS
37	Construction of CoP/Cu ₃ P/Ni ₂ P Double S-Scheme Heterojunctions for Improved Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2022, 126, 6947-6959.	3.1	22
38	Design and synthesis of phosphating bimetallic CeCo-MOF for substantially improved photocatalytic hydrogen evolution. Journal of Materials Chemistry C, 2022, 10, 8750-8761.	5.5	28
39	Amorphous WPâ€Modified Hierarchical ZnIn ₂ S ₄ Nanoflowers with Boosting Interfacial Charge Separation for Photocatalytic H ₂ Evolution. Advanced Materials Interfaces, 2022, 9, .	3.7	16
40	CoAl LDH in-situ derived CoAlP coupling with Ni2P form S-scheme heterojunction for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2022, 47, 23618-23631.	7.1	25
41	Amorphous/crystalline heterojunction interface driving the spatial separation of charge carriers for efficient photocatalytic hydrogen evolution. Materials Today Physics, 2022, 27, 100767.	6.0	20
42	<i>In Situ</i> Derivatization of NiAl-LDH/NiS a p–n Heterojunction for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2022, 5, 8157-8168.	5.1	10
43	Construction of CdS@Cu2-xS coreâ^'shell p-n heterojunction with enhanced charge separation for wide spectrum photocatalytic H2 evolution. Molecular Catalysis, 2022, 528, 112417.	2.0	8
44	Interface engineering: Construction of an effective interfacial charge transfer channel via CeO2/CoSx S-scheme heterojunction. Journal of Environmental Chemical Engineering, 2022, 10, 108035.	6.7	7
45	Toilless selenylation route to enhance the supercapacitor conductive performance of nanoflower-like NiAl-layered double hydroxide. Journal of Energy Storage, 2022, 52, 104968.	8.1	11
46	Integrating <scp> Co ₃ O ₄ </scp> with <scp> ZnIn ₂ S ₄ </scp> pâ€n heterojunction for efficient photocatalytic hydrogen production. International Journal of Energy Research, 2022, 46, 15589-15601.	4.5	13
47	Graphdiyne (g-CnH2n-2) based Co3S4 anchoring and edge-covalently modification coupled with carbon-defects g-C3N4 for photocatalytic hydrogen production. Separation and Purification Technology, 2022, 298, 121564.	7.9	73
48	Phosphorus ZIF-67@NiAl LDH S-scheme heterojunction for efficient photocatalytic hydrogen production. Applied Surface Science, 2022, 601, 154174.	6.1	23
49	Rational Design of a Core–Shell-Shaped Flowerlike Mn0.05Cd0.95S@NiAl-LDH Structure for Efficient Hydrogen Evolution. Catalysis Letters, 2021, 151, 634-647.	2.6	22
50	Ordered Self-supporting NiV LDHs@P-Nickel foam Nano-array as High-Performance supercapacitor electrode. Journal of Colloid and Interface Science, 2021, 583, 1-12.	9.4	53
51	Phosphatized mild-prepared-NiCo LDHs cabbage-like spheres exhibit excellent performance as a supercapacitor electrode. New Journal of Chemistry, 2021, 45, 251-261.	2.8	25
52	Oxygen-vacancy-rich cobalt–aluminium hydrotalcite structures served as high-performance supercapacitor cathode. Journal of Materials Chemistry C, 2021, 9, 620-632.	5.5	41
53	A novel materials manganese cadmium sulfide/cobalt nitride for efficiently photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 585, 217-228.	9.4	36
54	Interface engineering: NiAl-LDH in-situ derived NiP2 quantum dots and Cu3P nanoparticles ingeniously constructed p-n heterojunction for photocatalytic hydrogen evolution. Chemical Engineering Journal, 2021, 420, 127682.	12.7	108

#	Article	IF	CITATIONS
55	Amorphous Co ₃ S ₄ nanoparticle-modified tubular g-C ₃ N ₄ forms step-scheme heterojunctions for photocatalytic hydrogen production. Catalysis Science and Technology, 2021, 11, 943-955.	4.1	60
56	Theoretically guiding the construction of a novel Cu ₂ 0@Cu ₉₇ P ₃ @Cu ₃ P heterojunction with a 3D hierarchical structure for efficient photocatalytic hydrogen evolution. Nanoscale, 2021, 13, 1340-1353.	5.6	32
57	Regular octahedron Cu-MOFs modifies Mn0.05Cd0.95S nanoparticles to form a S-scheme heterojunction for photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 7230-7240.	7.1	51
58	g-C ₃ N ₄ /α-Fe ₂ O ₃ Supported Zero-Dimensional Co ₃ S ₄ Nanoparticles Form S-Scheme Heterojunction Photocatalyst for Efficient Hydrogen Production. Energy & Fuels, 2021, 35, 856-867.	5.1	53
59	Efficient hydrogen production at a rationally designed MoSe2@Co3O4 p-n heterojunction. Journal of Colloid and Interface Science, 2021, 586, 84-94.	9.4	73
60	Oxygenâ€vacancyâ€rich hydrated bimetallic chloride for supercapacitor cathode with remarkable enhanced performance. International Journal of Energy Research, 2021, 45, 2899-2911.	4.5	6
61	Tribological properties of MoS2 coating for ultra-long wear-life and low coefficient of friction combined with additive g-C3N4 in air. Friction, 2021, 9, 789-801.	6.4	30
62	CoAl LDH@Ni-MOF-74 S-Scheme Heterojunction for Efficient Hydrogen Evolution. Transactions of Tianjin University, 2021, 27, 127-138.	6.4	55
63	Enhanced effect of CdS on amorphous Mo15S19 for photocatalytic hydrogen evolution. New Journal of Chemistry, 2021, 45, 3920-3931.	2.8	10
64	Design and preparation of a ternary MoC-QDs/C/Mo–S heterojunction for enhanced eosin Y-sensitized photocatalytic hydrogen evolution. New Journal of Chemistry, 2021, 45, 11905-11917.	2.8	22
65	Amorphous Co ₃ O ₄ quantum dots hybridizing with 3D hexagonal CdS single crystals to construct a 0D/3D p–n heterojunction for a highly efficient photocatalytic H ₂ evolution. Dalton Transactions, 2021, 50, 10501-10514.	3.3	35
66	Cd _{0.8} Mn _{0.2} S/MoO ₃ composites with an S-scheme heterojunction for efficient photocatalytic hydrogen evolution. Dalton Transactions, 2021, 50, 5360-5369.	3.3	18
67	Eosin Y-sensitized rose-like MoS _x and CeVO ₄ construct a direct Z-scheme heterojunction for efficient photocatalytic hydrogen evolution. Catalysis Science and Technology, 2021, 11, 4749-4762.	4.1	19
68	Ni-MOF-74 derived nickel phosphide and In ₂ O ₃ form S-scheme heterojunction for efficient hydrogen evolution. New Journal of Chemistry, 2021, 45, 16155-16167.	2.8	20
69	A new allotrope of carbon-graphdiyne, synthesis and application in photocatalytic hydrogen evolution with surface plasmon resonance enhancement. Sustainable Energy and Fuels, 2021, 5, 4690-4700.	4.9	11
70	Hollow Nanorods and Amorphous Co ₉ S ₈ Quantum Dots Construct S-Scheme Heterojunction for Efficient Hydrogen Evolution. Journal of Physical Chemistry C, 2021, 125, 648-659.	3.1	23
71	0D CdxZn1-xS and amorphous Co9S8 formed S-scheme heterojunction boosting photocatalytic hydrogen evolution. Molecular Catalysis, 2021, 501, 111378.	2.0	22
72	Sâ€scheme W ₁₈ O ₄₉ /Mn _{0.2} Cd _{0.8} S Heterojunction for Improved Photocatalytic Hydrogen Evolution. ChemCatChem, 2021, 13, 2179-2190.	3.7	27

#	Article	IF	CITATIONS
73	Mn _{0.} <scp> ₀₅ Cd ₀ </scp> _. <scp> ₉₅ S </scp> decorated <scp>MOF</scp> â€derived <scp> Co ₉ S ₈ </scp> hollow polyhedron for efficient photocatalytic hydrogen evolut. International Journal of Energy Research, 2021, 45, 13040-13054.	4.5	25
74	Amorphous CoS _{<i>x</i>} Growth on CaTiO ₃ Nanocubes Formed S-Scheme Heterojunction for Photocatalytic Hydrogen Production. Energy & Fuels, 2021, 35, 6231-6239.	5.1	17
75	Cuboidal Cu 2 O nanoparticles dispersed granular Mn 0. 05 Cd 0 . 95 S form a pâ€n heterojunction for efficient photocatalytic hydrogen evolution. International Journal of Energy Research, 2021, 45, 14959-14970.	4.5	5
76	ZIF-9 derived cobalt phosphide and In2O3 as co-catalysts for efficient hydrogen production. Molecular Catalysis, 2021, 507, 111551.	2.0	5
77	Pristine hexagonal CdS assembled with NiV LDH nanosheet formed p-n heterojunction for efficient photocatalytic hydrogen evolution. Applied Surface Science, 2021, 548, 149212.	6.1	39
78	Graphdiyne Based Ternary GD-Cul-NiTiO ₃ S-Scheme Heterjunction Photocatalyst for Hydrogen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 24896-24906.	8.0	79
79	Rational design of a cobalt sulfide/bismuth sulfide S-scheme heterojunction for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 592, 237-248.	9.4	45
80	Pyramidal CdS Polyhedron Modified with NiAl LDH to Form Sâ€scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution. ChemCatChem, 2021, 13, 3525-3535.	3.7	23
81	CeO2 nanoparticles dispersed on CoAl-LDH hexagonal nanosheets as 0D/2D binary composite for enhanced photocatalytic hydrogen evolution. Surfaces and Interfaces, 2021, 24, 101105.	3.0	15
82	2D CoP supported 0D WO3 constructed S-scheme for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 20560-20572.	7.1	67
83	Promotion of the excited electron transfer over MoO3@Cu3P p-n heterojunction for photocatalytic hydrogen production under visible light irradiation. Molecular Catalysis, 2021, 510, 111691.	2.0	12
84	Cube <scp> Cu ₂ O </scp> modified <scp>CoALâ€LDH</scp> pâ€n heterojunction for photocatalytic hydrogen evolution. International Journal of Energy Research, 2021, 45, 19014-19027.	4.5	12
85	Mn _{0.} <scp> ₂ Cd ₀ </scp> _. <scp> ₈ S </scp> modified with <scp>3D</scp> flowerâ€shaped Co ₃ (<scp> PO ₄ </scp>) ₂ for efficient phot. International Journal of Energy Research, 2021, 45, 19453-19466.	4.5	17
86	Strategy of Graphdiyne (gâ^'C _n H _{2nâ€2}) Preparation Coupling with the Flowerâ€Like NiAlâ€LDH Heterojunctions for Efficient Photocatalytic Hydrogen Evolution**. Chemistry - A European Journal, 2021, 27, 12649-12658.	3.3	22
87	Cobalt Nanoparticles Encapsulated in Hollow Carbon Nitride Nanotubes for Efficient Photocatalytic Hydrogen Evolution. Energy Technology, 2021, 9, 2100499.	3.8	6
88	A New Allotrope of Carbon—Graphdiyne (gâ€C <i>_n</i> H ₂ <i>_n</i> _{a^2}) Boosting with Mn _{0.2} Cd _{0.8} S form Sâ€Scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution, Advanced Materials Interfaces, 2021, 8, 2100630.	3.7	26
89	3D mesoporous ultra-thin g-C3N4 coupled with monoclinic β-AgVO3 as p-n heterojunction for photocatalytic hydrogen evolution. Molecular Catalysis, 2021, 513, 111828.	2.0	6
90	MoC quantum dots modified by CeO2 dispersed in ultra-thin carbon films for efficient photocatalytic hydrogen evolution. Molecular Catalysis, 2021, 513, 111829.	2.0	7

#	Article	IF	CITATIONS
91	Visible-light driven S-scheme Mn0.2Cd0.8S/CoTiO3 heterojunction for photocatalytic hydrogen evolution. Renewable Energy, 2021, 173, 389-400.	8.9	74
92	Tactfully Assembled CuMOF/CdS S-Scheme Heterojunction for High-Performance Photocatalytic H ₂ Evolution under Visible Light. ACS Applied Energy Materials, 2021, 4, 8550-8562.	5.1	21
93	Znâ€Vacancy Engineered Sâ€Scheme ZnCdS/ZnS Photocatalyst for Highly Efficient Photocatalytic H ₂ Evolution. ChemCatChem, 2021, 13, 4738-4750.	3.7	53
94	CdS Reinforced with CoS _X /NiCoâ€LDH Coreâ€shell Coâ€catalyst Demonstrate High Photocatalytic Hydrogen Evolution and Durability in Anhydrous Ethanol. Chemistry - A European Journal, 2021, 27, 16448-16460.	3.3	9
95	Co3O4/CeO2 p-n heterojunction construction and application for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46, 33809-33822.	7.1	38
96	Mn0.05Cd0.95S/Cu2SeI p-n heterojunction with high-conductivity for efficient photocatalytic hydrogen evolution. Journal of Industrial and Engineering Chemistry, 2021, 103, 222-231.	5.8	7
97	Hexagonal CdS assembled with lamellar NiCo LDH form S-scheme heterojunction for photocatalytic hydrogen evolution. Materials Science in Semiconductor Processing, 2021, 135, 106128.	4.0	13
98	Visible-light-driven two dimensional metal-organic framework modified manganese cadmium sulfide for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2021, 603, 344-355.	9.4	31
99	NiCo LDH <i>in situ</i> derived NiCoP 3D nanoflowers coupled with a Cu ₃ P p–n heterojunction for efficient hydrogen evolution. Nanoscale, 2021, 13, 13858-13872.	5.6	35
100	MoP@MoO ₃ S-scheme heterojunction <i>in situ</i> construction with phosphating MoO ₃ for high-efficient photocatalytic hydrogen production. Nanoscale, 2021, 13, 18507-18519.	5.6	22
101	Zeolitic Imidazolate Framework-67-Derived P-Doped Hollow Porous Co ₃ O ₄ as a Photocatalyst for Hydrogen Production from Water. ACS Applied Materials & Interfaces, 2021, 13, 50996-51007.	8.0	34
102	Effect of phosphating on NiAl-LDH layered double hydroxide form S-scheme heterojunction for photocatalytic hydrogen evolution. Molecular Catalysis, 2021, 516, 111990.	2.0	39
103	Snowflake-like Cu ₂ S Coated with NiAl-LDH Forms a p–n Heterojunction for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials, 2021, 4, 14220-14231.	5.1	27
104	Graphdiyne (g-C _{<i>n</i>} H _{2<i>n</i>–2}) Coupled with Co ₃ O ₄ Formed a Zero-Dimensional/Two-Dimensional p–n Heterojunction for Efficient Hydrogen Evolution. Industrial & Engineering Chemistry Research, 2021, 60, 18397-18407.	3.7	15
105	Hierarchical Co ₃ (PO ₄) ₂ /Cul/g-C <i>_n</i> H _{2<i>n</i>–2} S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution. Inorganic Chemistry, 2021, 60. 19402-19413.	4.0	13
106	Cu/CdS/MnO _{<i>x</i>} Nanostructure-Based Photocatalyst for Photocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2021, 4, 13848-13860.	5.0	32
107	Performance of ZIF-67 – Derived fold polyhedrons for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2020, 382, 123051.	12.7	165
108	Performance of WO3/g-C3N4 heterojunction composite boosting with NiS for photocatalytic hydrogen evolution. Applied Surface Science, 2020, 499, 143862.	6.1	125

#	Article	IF	CITATIONS
109	An amorphous nickel boride-modified Zn _x Cd _{1â^'x} S solid solution for enhanced photocatalytic hydrogen evolution. Dalton Transactions, 2020, 49, 1220-1231.	3.3	41
110	Amorphous tungsten phosphosulphide-modified CdS nanorods as a highly efficient electron-cocatalyst for enhanced photocatalytic hydrogen production. Physical Chemistry Chemical Physics, 2020, 22, 1932-1943.	2.8	26
111	CoP nanoparticles as cocatalyst modified the CdS/NiWO ₄ p–n heterojunction to produce hydrogen efficiently. New Journal of Chemistry, 2020, 44, 1426-1438.	2.8	40
112	Efficient Photocatalytic Hydrogen Production Achieved by WO3 Coupled with NiP2 Over ZIF-8. Catalysis Surveys From Asia, 2020, 24, 59-69.	2.6	10
113	Construction strategy of Mo-S@Mo-P heterojunction formed with in-situ phosphating Mo-S nanospheres toward efficient photocatalytic hydrogen production. Chemical Engineering Journal, 2020, 391, 123545.	12.7	68
114	Unique synergistic effects of ZIF-9(Co)-derived cobalt phosphide and CeVO4 heterojunction for efficient hydrogen evolution. Chinese Journal of Catalysis, 2020, 41, 82-94.	14.0	207
115	Facile synthesis of difunctional NiV LDH@ZIF-67 p-n junction: Serve as prominent photocatalyst for hydrogen evolution and supercapacitor electrode as well. Renewable Energy, 2020, 162, 535-549.	8.9	83
116	Efficient photocatalytic hydrogen production by Mn _{0.05} Cd _{0.95} S nanoparticles anchored on cubic NiSe ₂ . New Journal of Chemistry, 2020, 44, 14879-14889.	2.8	11
117	Graphdiyne formed a novel CuI-GD/g-C ₃ N ₄ S-scheme heterojunction composite for efficient photocatalytic hydrogen evolution. Sustainable Energy and Fuels, 2020, 4, 5088-5101.	4.9	76
118	Mn0.2Cd0.8S nanorods assembled with 0D CoWO4 nanoparticles formed p-n heterojunction for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 26733-26745.	7.1	43
119	Phosphated 2D MoS ₂ nanosheets and 3D NiTiO ₃ nanorods for efficient photocatalytic hydrogen evolution. ChemCatChem, 2020, 12, 5492-5503.	3.7	31
120	A sea-urchin-structured NiCo ₂ O ₄ decorated Mn _{0.05} Cd _{0.95} S p–n heterojunction for enhanced photocatalytic hydrogen evolution. Dalton Transactions, 2020, 49, 13393-13405.	3.3	39
121	Amorphous NiCoB nanoalloy modified Mn0.05Cd0.95S for photocatalytic hydrogen evolution. Molecular Catalysis, 2020, 492, 111001.	2.0	24
122	Synergistic effect of MoS2 over WP photocatalyst for promoting hydrogen production. Journal of Solid State Chemistry, 2020, 288, 121419.	2.9	6
123	TiO ₂ as an interfacial-charge-transfer-bridge to construct eosin Y-mediated direct Z-scheme electron transfer over a Co ₉ S ₈ quantum dot/TiO ₂ photocatalyst. Catalysis Science and Technology, 2020, 10, 5267-5280.	4.1	48
124	Performance of Ni-Cu bimetallic co-catalyst g-C3N4 nanosheets for improving hydrogen evolution. Journal of Materials Science and Technology, 2020, 49, 144-156.	10.7	139
125	Phosphating 2D CoAl LDH anchored on 3D self-assembled NiTiO ₃ hollow rods for efficient hydrogen evolution. Catalysis Science and Technology, 2020, 10, 2931-2947.	4.1	45
126	Enhanced Hydrogen Evolution over Sea-Urchin-Structure NiCoP Decorated ZnCdS Photocatalyst. Catalysis Letters, 2020, 150, 2937-2950.	2.6	28

#	Article	IF	CITATIONS
127	Dodecahedron ZIF-67 anchoring ZnCdS particles for photocatalytic hydrogen evolution. Molecular Catalysis, 2020, 485, 110832.	2.0	61
128	Distinctive Improved Synthesis and Application Extensions Graphdiyne for Efficient Photocatalytic Hydrogen Evolution. ChemCatChem, 2020, 12, 1985-1995.	3.7	60
129	0D/2D spatial structure of Cd _x Zn _{1â^'x} S/Ni-MOF-74 for efficient photocatalytic hydrogen evolution. Dalton Transactions, 2020, 49, 5143-5156.	3.3	63
130	Rational design of a novel p-n heterojunction based on 3D layered nanoflower MoSx supported CoWO4 nanoparticles for superior photocatalytic hydrogen generation. Journal of Colloid and Interface Science, 2020, 569, 34-49.	9.4	71
131	Self-assembly of zinc cadmium sulfide nanorods into nanoflowers with enhanced photocatalytic hydrogen production activity. Journal of Colloid and Interface Science, 2020, 567, 357-368.	9.4	57
132	Based on amorphous carbon C@ZnxCd1-xS/Co3O4 composite for efficient photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2020, 45, 8405-8417.	7.1	45
133	Rational Design of All-Solid-State 0D/2D Mn _{0.2} Cd _{0.8} S/CeO ₂ Direct Z-Scheme for Photocatalytic Hydrogen Evolution. Energy & Fuels, 2020, 34, 2599-2611.	5.1	61
134	3D layered nano-flower MoSx anchored with CoP nanoparticles form double proton adsorption site for enhanced photocatalytic hydrogen evolution under visible light driven. International Journal of Hydrogen Energy, 2020, 45, 2578-2592.	7.1	48
135	ZnxCd1-xS nanoparticles dispersed on CoAl-layered double hydroxide in 2D heterostructure for enhanced photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2020, 572, 62-73.	9.4	56
136	High Electron Conductivity of Ni/Ni ₃ C Nanoparticles Anchored on C-Rich Graphitic Carbon Nitride for Obviously Improving Hydrogen Generation. Industrial & Engineering Chemistry Research, 2020, 59, 8974-8983.	3.7	15
137	MOFs-derived Cu3P@CoP p-n heterojunction for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 2020, 395, 125113.	12.7	143
138	"Ship in a Bottle―design of ZIF-9@CoAl LDH hybrid compound as a high performance asymmetric supercapacitor. New Journal of Chemistry, 2020, 44, 7528-7540.	2.8	21
139	Ostensibly phosphatized NiAl LDHs nanoflowers with remarkable charge storage property for asymmetric supercapacitors. Journal of Colloid and Interface Science, 2020, 577, 115-126.	9.4	68
140	High Efficiency Electron Transfer Realized over NiS ₂ /MoSe ₂ S-Scheme Heterojunction in Photocatalytic Hydrogen Evolution. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, .	4.9	53
141	Properties of monoclinic wolframite structure InWO4 for efficient and sustainable photocatalytic hydrogen evolution. New Journal of Chemistry, 2019, 43, 12668-12677.	2.8	5
142	Boosting Photocatalytic Hydrogen Evolution Achieved by NiSx Coupled with g-C ₃ N ₄ @ZIF-67 Heterojunction. Journal of Physical Chemistry C, 2019, 123, 18248-18263.	3.1	80
143	CoSe2 Clusters as Efficient Co-Catalyst Modified CdS Nanorod for Enhance Visible Light Photocatalytic H2 Evolution. Catalysts, 2019, 9, 616.	3.5	11
144	2D/1D Zn0.7Cd0.3S p-n heterogeneous junction enhanced with NiWO4 for efficient photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2019, 554, 113-124.	9.4	77

#	Article	IF	CITATIONS
145	Enhanced photocatalytic hydrogen evolution over semi-crystalline tungsten phosphide. International Journal of Hydrogen Energy, 2019, 44, 26848-26862.	7.1	17
146	Orthorhombic WP co-catalyst coupled with electron transfer bridge UiO-66 for efficient visible-light-driven H2 evolution. Journal of Colloid and Interface Science, 2019, 556, 689-703.	9.4	34
147	A phosphatized NiCo LDH 1D dendritic electrode for high energy asymmetric supercapacitors. Dalton Transactions, 2019, 48, 14853-14863.	3.3	48
148	Rational design W-doped Co-ZIF-9 based Co ₃ S ₄ composite photocatalyst for efficient visible-light-driven photocatalytic H ₂ evolution. Sustainable Energy and Fuels, 2019, 3, 173-183.	4.9	35
149	Unique photocatalytic activities of transition metal phosphide for hydrogen evolution. Journal of Colloid and Interface Science, 2019, 541, 287-299.	9.4	57
150	Controllable design of double metal oxide (NiCo ₂ O ₄)-modified CdS for efficient photocatalytic hydrogen production. Physical Chemistry Chemical Physics, 2019, 21, 4501-4512.	2.8	52
151	Properties of iron vanadate over CdS nanorods for efficient photocatalytic hydrogen production. New Journal of Chemistry, 2019, 43, 3609-3618.	2.8	41
152	Synergistic interface phenomena between MOFs, NiPx for efficient hydrogen production. Molecular Catalysis, 2019, 467, 78-86.	2.0	34
153	Sustainable and efficient hydrogen evolution over a noble metal-free WP double modified Zn _x Cd _{1â^'x} S photocatalyst driven by visible-light. Dalton Transactions, 2019, 48, 11122-11135.	3.3	41
154	Inserting MOF into flaky CdS photocatalyst forming special structure and active sites for efficient hydrogen production. International Journal of Hydrogen Energy, 2019, 44, 19640-19649.	7.1	29
155	Insights into the unique role of cobalt phosphide for boosting hydrogen evolution activity based on MIL-125-NH2. International Journal of Hydrogen Energy, 2019, 44, 17909-17921.	7.1	26
156	Zn–Ni–P Nanoparticles Decorated g-C3N4 Nanosheets Applicated as Photoanode in Photovoltaic Fuel Cells. Catalysis Letters, 2019, 149, 2397-2407.	2.6	12
157	CdS Photocorrosion Protection by MoSe2 Modification for Photocatalytic Hydrogen Production. Catalysis Surveys From Asia, 2019, 23, 231-244.	2.6	18
158	g ₃ N ₄ /Cu ₃ P/UiOâ€66 Ternary Composites for Enhanced Visible Light Photocatalytic H ₂ Evolution. ChemistrySelect, 2019, 4, 5459-5469.	1.5	14
159	Effective Electron–Hole Separation Over Controllable Construction of CdS/Co-Ni-P Core/Shell Nanophotocatalyst for Improved Photocatalytic Hydrogen Evolution Under Visible-Light-Driven. Catalysis Surveys From Asia, 2019, 23, 219-230.	2.6	21
160	Effective electron–hole separation over a controllably constructed WP/UiO-66/CdS heterojunction to achieve efficiently improved visible-light-driven photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2019, 21, 8326-8341.	2.8	85
161	Controllable design of Zn-Ni-P on g-C3N4 for efficient photocatalytic hydrogen production. Chinese Journal of Catalysis, 2019, 40, 390-402.	14.0	176
162	Effect of Ni(OH)2 on CdS@g-C3N4 Composite for Efficient Photocatalytic Hydrogen Production. Catalysis Letters, 2019, 149, 1174-1185.	2.6	22

#	Article	IF	CITATIONS
163	CoSe ₂ /CdS-diethylenetriamine coupled with P clusters for efficient photocatalytic hydrogen evolution. Dalton Transactions, 2019, 48, 4015-4025.	3.3	9
164	Ferrous oxalate dehydrate over CdS as Z-scheme photocatalytic hydrogen evolution. Journal of Solid State Chemistry, 2019, 274, 286-294.	2.9	44
165	Accelerated charge transfer <i>via</i> a nickel tungstate modulated cadmium sulfide p–n heterojunction for photocatalytic hydrogen evolution. Catalysis Science and Technology, 2019, 9, 1944-1960.	4.1	63
166	Orderly designed functional phosphide nanoparticles modified g-C3N4 for efficient photocatalytic hydrogen evolution. Journal of Sol-Gel Science and Technology, 2019, 90, 565-577.	2.4	7
167	Special Z-scheme CdS@WO3 hetero-junction modified with CoP for efficient hydrogen evolution. International Journal of Hydrogen Energy, 2019, 44, 13232-13241.	7.1	37
168	Noble-Metal-Free Visible Light Driven Hetero-structural Ni/ZnxCd1â^'xS Photocatalyst for Efficient Hydrogen Production. Catalysis Letters, 2019, 149, 1788-1799.	2.6	27
169	Boosting photocatalytic hydrogen evolution achieved by rationally designed/constructed carbon nitride with ternary cobalt phosphosulphide. Journal of Colloid and Interface Science, 2019, 548, 303-311.	9.4	23
170	Growth of Zn _{0.5} Cd _{0.5} S/α-Ni(OH) ₂ heterojunction by a facile hydrothermal transformation efficiently boosting photocatalytic hydrogen production. New Journal of Chemistry, 2019, 43, 6411-6421.	2.8	37
171	Rationally Designed Functional Ni ₂ P Nanoparticles as Co–Catalyst Modified CdS@g ₃ N ₄ Heterojunction for Efficient Photocatalytic Hydrogen Evolution. ChemistrySelect, 2019, 4, 3602-3610.	1.5	4
172	Photoelectron directional transfer over a g-C ₃ N ₄ /CdS heterojunction modulated with WP for efficient photocatalytic hydrogen evolution. Dalton Transactions, 2019, 48, 4341-4352.	3.3	58
173	Hydroxides Ni(OH) ₂ &Ce(OH) ₃ as a novel hole storage layer for enhanced photocatalytic hydrogen evolution. Dalton Transactions, 2019, 48, 17660-17672.	3.3	19
174	WP modified S-scheme Zn _{0.5} Cd _{0.5} S/WO ₃ for efficient photocatalytic hydrogen production. New Journal of Chemistry, 2019, 43, 19159-19171.	2.8	46
175	Effect of electron-hole separation in MoO3@Ni2P hybrid nanocomposite as highly efficient metal-free photocatalyst for H2 production. Journal of Colloid and Interface Science, 2019, 537, 629-639.	9.4	64
176	Charge separation and electron transfer routes modulated with Co-Mo-P over g-C3N4 photocatalyst. Molecular Catalysis, 2019, 462, 46-55.	2.0	25
177	Function of NiSe2 over CdS nanorods for enhancement of photocatalytic hydrogen production — From preparation to mechanism. Applied Surface Science, 2019, 467-468, 1239-1248.	6.1	11
178	Synergistic Enhancement of Hydrogen Production by ZIF-67 (Co) Derived Mo–Co–S Modified g-C3N4/rGO Photocatalyst. Catalysis Letters, 2019, 149, 34-48.	2.6	20
179	Light-assisted synthesis MoS _x as a noble metal free cocatalyst formed heterojunction CdS/Co ₃ O ₄ photocatalyst for visible light harvesting and spatial charge separation. Dalton Transactions, 2018, 47, 6973-6985.	3.3	61
180	Visible Light Harvesting and Spatial Charge Separation over the Creative Ni/CdS/Co ₃ O ₄ Photocatalyst. Journal of Physical Chemistry C, 2018, 122, 10430-10441.	3.1	75

#	Article	IF	CITATIONS
181	In-situ La doped Co3O4 as highly efficient photocatalyst for solar hydrogen generation. International Journal of Hydrogen Energy, 2018, 43, 8674-8682.	7.1	57
182	Strategy of nitrogen defects sponge from g-C 3 N 4 nanosheets and Ni-Bi-Se complex modification for efficient dye-sensitized photocatalytic H 2 evolution. Molecular Catalysis, 2018, 453, 1-11.	2.0	22
183	Distinctive organized molecular assemble of MoS ₂ , MOF and Co ₃ O ₄ , for efficient dye-sensitized photocatalytic H ₂ evolution. Catalysis Science and Technology, 2018, 8, 2352-2363.	4.1	63
184	Novel Strategy of Defect-Induced Graphite Nitride Carbon Preparation and Photocatalytic Performance. Catalysis Letters, 2018, 148, 1296-1308.	2.6	16
185	Ni-Mo-S nanoparticles modified graphitic C3N4 for efficient hydrogen evolution. Applied Surface Science, 2018, 427, 587-597.	6.1	88
186	Design and synthesis of polymeric carbon nitride@zeolitic imidazolate frameworks (CoWS) semiconductor junction nanowires for efficient photocatalytic hydrogen evolution. New Journal of Chemistry, 2018, 42, 17396-17406.	2.8	10
187	Orderly-designed Ni2P nanoparticles on g-C3N4 and UiO-66 for efficient solar water splitting. Journal of Colloid and Interface Science, 2018, 532, 287-299.	9.4	72
188	CdS p–n heterojunction co-boosting with Co ₃ O ₄ and Ni-MOF-74 for photocatalytic hydrogen evolution. Dalton Transactions, 2018, 47, 11176-11189.	3.3	70
189	Charge transfer behaviors over MOF-5@g-C 3 N 4 with Ni x Mo 1â^'x S 2 modification. International Journal of Hydrogen Energy, 2018, 43, 9914-9923.	7.1	41
190	Functionalization of sheet structure MoS2 with CeO2–Co3O4 for efficient photocatalytic hydrogen evolution. Journal of Materials Science, 2018, 53, 15271-15284.	3.7	33
191	Well-regulated nickel nanoparticles functional modified ZIF-67 (Co) derived Co3O4/CdS p-n heterojunction for efficient photocatalytic hydrogen evolution. Applied Surface Science, 2018, 462, 213-225.	6.1	129
192	Light harvesting and charge management by Ni4S3 modified metalâ~'organic frameworks and rGO in the process of photocatalysis. Journal of Colloid and Interface Science, 2018, 529, 44-52.	9.4	60
193	Efficient hydrogen production over MOFs (ZIF-67) and g-C3N4 boosted with MoS2 nanoparticles. International Journal of Hydrogen Energy, 2018, 43, 13039-13050.	7.1	91
194	Fabrication and behaviors of CdS on Bi ₂ MoO ₆ thin film photoanodes. RSC Advances, 2017, 7, 10774-10781.	3.6	32
195	Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution: Unraveling the essential roles of graphene quantum dots. Applied Catalysis B: Environmental, 2017, 216, 59-69.	20.2	199
196	Modulation of the excited-electron recombination process by introduce g-C3N4 on Bi-based bimetallic oxides photocatalyst. Applied Surface Science, 2017, 423, 255-265.	6.1	58
197	Boosting the catalytic performance of MoS x cocatalysts over CdS nanoparticles for photocatalytic H 2 evolution by Co doping via a facile photochemical route. Applied Surface Science, 2017, 420, 456-464.	6.1	78
198	Peculiar synergetic effect of MoS 2 quantum dots and graphene on Metal-Organic Frameworks for photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2017, 210, 45-56.	20.2	269

#	Article	IF	CITATIONS
199	Charge transmission channel construction between a MOF and rGO by means of Co–Mo–S modification. Catalysis Science and Technology, 2017, 7, 4478-4488.	4.1	68
200	Promotion of the excited electron transfer over Ni- and Co -sulfide co-doped g-C3N4 photocatalyst (g-C3N4/NixCo1â^'xS2) for hydrogen Production under visible light irradiation. Scientific Reports, 2017, 7, 7710.	3.3	31
201	The roles of Ni nanoparticles over CdS nanorods for improved photocatalytic stability and activity. Superlattices and Microstructures, 2017, 111, 687-695.	3.1	32
202	Exploration of Zr–Metal–Organic Framework as Efficient Photocatalyst for Hydrogen Production. Nanoscale Research Letters, 2017, 12, 539.	5.7	85
203	Construction of CuO-modified zeolitic imidazolate framework-9 for photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2017, 38, 2056-2066.	14.0	34
204	Synergistic effect of rare earth metal Sm oxides and Co _{1â^'<i>x</i>} S on sheet structure MoS ₂ for photocatalytic hydrogen evolution. RSC Advances, 2017, 7, 56417-56425.	3.6	30
205	Fivefold Enhanced Photoelectrochemical Properties of ZnO Nanowire Arrays Modified with C3N4 Quantum Dots. Catalysts, 2017, 7, 99.	3.5	24
206	Quantum Confinement Effect of Graphene-Like C ₃ N ₄ Nanosheets for Efficient Photocatalytic Hydrogen Production fromWater Splitting. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 2581-2592.	4.9	19
207	Functionalization of TiO2 with graphene quantum dots for efficient photocatalytic hydrogen evolution. Superlattices and Microstructures, 2016, 94, 237-244.	3.1	77
208	Enhanced Surface Electron Transfer with the Aid of Methyl Viologen on the Co ₃ O ₄ -g-C ₃ N ₄ Photocatalyst. Chemistry Letters, 2016, 45, 116-118.	1.3	14
209	Modulating photogenerated electron transfer with selectively exposed Co–Mo facets on a novel amorphous g-C3N4/CoxMo1ⰒxS2 photocatalyst. RSC Advances, 2016, 6, 23709-23717.	3.6	36
210	Behavior of borate complex anion on the stabilities and the hydrogen evolutions of ZnxCo3â^'xO4 decorated graphene. Superlattices and Microstructures, 2015, 82, 599-611.	3.1	20
211	Z-Scheme Photocatalytic System Utilizing Separate Reaction Centers by Directional Movement of Electrons. Journal of Physical Chemistry C, 2011, 115, 8586-8593.	3.1	49
212	Modification of TiO ₂ Photocatalysts with Metalloid Anions and the Applicaton in Salt Solution System. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26, 571-578.	1.3	11
213	Efficient Photocatalytic Hydrogen Evolution from Water without an Electron Mediator over Ptâ^'Rose Bengal Catalysts. Journal of Physical Chemistry C, 2009, 113, 2630-2635.	3.1	83
214	High-Efficient Photocatalytic Hydrogen Evolution on Eosin Y-Sensitized Tiâ^'MCM41 Zeolite under Visible-Light Irradiation. Journal of Physical Chemistry C, 2007, 111, 8237-8241.	3.1	97
215	5.1% Apparent quantum efficiency for stable hydrogen generation over eosin-sensitized CuO/TiO2 photocatalyst under visible light irradiation. Catalysis Communications, 2007, 8, 1267-1273.	3.3	361
216	Improved quantum yield for photocatalytic hydrogen generation under visible light irradiation over eosin sensitized TiO2—Investigation of different noble metal loading. Journal of Molecular Catalysis A, 2006, 259, 275-280.	4.8	117

#	Article	IF	CITATIONS
217	Efficient Photocatalytic Hydrogen Evolution over Ptx-/TiO2-yByCatalysts in a Ternary System of K+, Mg2+/B4O72-/H2O. Energy & Fuels, 2005, 19, 1126-1132.	5.1	28