Shondra M Pruett-Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4212126/publications.pdf

Version: 2024-02-01

82 papers 4,893 citations

172457 29 h-index 65 g-index

93 all docs 93
docs citations

93 times ranked 7403 citing authors

#	Article	IF	CITATIONS
1	Rapid "Open-Source―Engineering of Customized Zinc-Finger Nucleases for Highly Efficient Gene Modification. Molecular Cell, 2008, 31, 294-301.	9.7	660
2	Gene Targeting of a Disease-Related Gene in Human Induced Pluripotent Stem and Embryonic Stem Cells. Cell Stem Cell, 2009, 5, 97-110.	11.1	505
3	High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nature Methods, 2011, 8, 753-755.	19.0	427
4	Discovery of a proteinaceous cellular receptor for a norovirus. Science, 2016, 353, 933-936.	12.6	241
5	A Survey of Validation Strategies for CRISPR-Cas9 Editing. Scientific Reports, 2018, 8, 888.	3.3	241
6	Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature, 2021, 595, 295-302.	27.8	175
7	Germline Genetic IKZF1 Variation and Predisposition to Childhood Acute Lymphoblastic Leukemia. Cancer Cell, 2018, 33, 937-948.e8.	16.8	142
8	Attenuation of Zinc Finger Nuclease Toxicity by Small-Molecule Regulation of Protein Levels. PLoS Genetics, 2009, 5, e1000376.	3.5	131
9	ULK1 and ULK2 Regulate Stress Granule Disassembly Through Phosphorylation and Activation of VCP/p97. Molecular Cell, 2019, 74, 742-757.e8.	9.7	123
10	Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Science Translational Medicine, 2021, 13, eabh0272.	12.4	123
11	Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Advances, 2019, 3, 3379-3392.	5. 2	121
12	Comparison of Zinc Finger Nucleases for Use in Gene Targeting in Mammalian Cells. Molecular Therapy, 2008, 16, 707-717.	8.2	117
13	CRIS.py: A Versatile and High-throughput Analysis Program for CRISPR-based Genome Editing. Scientific Reports, 2019, 9, 4194.	3.3	109
14	The $Z\hat{l}\pm2$ domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development. Journal of Biological Chemistry, 2020, 295, 8325-8330.	3.4	99
15	Hotspots of aberrant enhancer activity punctuate the colorectal cancer epigenome. Nature Communications, 2017, 8, 14400.	12.8	93
16	Nuclease-mediated gene editing by homologous recombination of the human globin locus. Nucleic Acids Research, 2014, 42, 1365-1378.	14.5	90
17	ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection. Science Immunology, 2022, 7, eabo6294.	11.9	82
18	High-efficiency genome editing via 2A-coupled co-expression of fluorescent proteins and zinc finger nucleases or CRISPR/Cas9 nickase pairs. Nucleic Acids Research, 2014, 42, e84-e84.	14.5	71

#	Article	lF	Citations
19	Accurate genomic variant detection in single cells with primary template-directed amplification. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	69
20	MYCN amplification and ATRX mutations are incompatible in neuroblastoma. Nature Communications, 2020, $11,913$.	12.8	66
21	cBAF complex components and MYC cooperate early in CD8+ T cell fate. Nature, 2022, 607, 135-141.	27.8	65
22	MAGE cancer-testis antigens protect the mammalian germline under environmental stress. Science Advances, 2019, 5, eaav4832.	10.3	56
23	BCL11A enhancer–edited hematopoietic stem cells persist in rhesus monkeys without toxicity. Journal of Clinical Investigation, 2020, 130, 6677-6687.	8.2	54
24	A Cancer-Specific Ubiquitin Ligase Drives mRNA Alternative Polyadenylation by Ubiquitinating the mRNA $3\hat{a}\in^2$ End Processing Complex. Molecular Cell, 2020, 77, 1206-1221.e7.	9.7	52
25	Attenuation of Microbiotal Dysbiosis and Hypertension in a <i>CRISPR/Cas9</i> Gene Ablation Rat Model of <i>GPER1</i> . Hypertension, 2018, 72, 1125-1132.	2.7	50
26	Gene Correction by Homologous Recombination With Zinc Finger Nucleases in Primary Cells From a Mouse Model of a Generic Recessive Genetic Disease. Molecular Therapy, 2010, 18, 1103-1110.	8.2	47
27	Improving single-cell cloning workflow for gene editing in human pluripotent stem cells. Stem Cell Research, 2018, 31, 186-192.	0.7	46
28	Cytoneme delivery of Sonic Hedgehog from ligand-producing cells requires Myosin 10 and a Dispatched-BOC/CDON co-receptor complex. ELife, 2021, 10, .	6.0	45
29	Translational Repression of G3BP in Cancer and Germ Cells Suppresses Stress Granules and Enhances Stress Tolerance. Molecular Cell, 2020, 79, 645-659.e9.	9.7	40
30	CRISPR screens unveil signal hubs for nutrient licensing of T cell immunity. Nature, 2021, 600, 308-313.	27.8	36
31	The chemotherapeutic CX-5461 primarily targets TOP2B and exhibits selective activity in high-risk neuroblastoma. Nature Communications, 2021, 12, 6468.	12.8	35
32	Degradation of Janus kinases in <i>CRLF2</i> -rearranged acute lymphoblastic leukemia. Blood, 2021, 138, 2313-2326.	1.4	34
33	Pediatric MDS and bone marrow failure-associated germline mutations in SAMD9 and SAMD9L impair multiple pathways in primary hematopoietic cells. Leukemia, 2021, 35, 3232-3244.	7.2	32
34	Clec16a is Critical for Autolysosome Function and Purkinje Cell Survival. Scientific Reports, 2016, 6, 23326.	3.3	31
35	The COPII cargo adapter SEC24C is essential for neuronal homeostasis. Journal of Clinical Investigation, 2018, 128, 3319-3332.	8.2	30
36	Gene Editing Using ssODNs with Engineered Endonucleases. Methods in Molecular Biology, 2015, 1239, 251-265.	0.9	29

#	Article	IF	CITATIONS
37	Gain-of-function mutations in RPA1 cause a syndrome with short telomeres and somatic genetic rescue. Blood, 2022, 139, 1039-1051.	1.4	29
38	Nonsense-Mediated RNA Decay Is a Unique Vulnerability of Cancer Cells Harboring <i>SF3B1</i> or <i>U2AF1</i> Mutations. Cancer Research, 2021, 81, 4499-4513.	0.9	28
39	Dynamic CTCF binding directly mediates interactions among <i>cis</i> regulatory elements essential for hematopoiesis. Blood, 2021, 137, 1327-1339.	1.4	27
40	Positional cloning of quantitative trait nucleotides for blood pressure and cardiac QT-interval by targeted CRISPR/Cas9 editing of a novel long non-coding RNA. PLoS Genetics, 2017, 13, e1006961.	3 . 5	26
41	Cleavage activates Dispatched for Sonic Hedgehog ligand release. ELife, 2018, 7, .	6.0	25
42	Schizophrenia-related microdeletion causes defective ciliary motility and brain ventricle enlargement via microRNA-dependent mechanisms in mice. Nature Communications, 2020, 11, 912.	12.8	25
43	Antitumor Effects of CAR T Cells Redirected to the EDB Splice Variant of Fibronectin. Cancer Immunology Research, 2021, 9, 279-290.	3.4	24
44	PROSER1 mediates TET2 O-GlcNAcylation to regulate DNA demethylation on UTX-dependent enhancers and CpG islands. Life Science Alliance, 2022, 5, e202101228.	2.8	24
45	The histone deacetylase complex MiDAC regulates a neurodevelopmental gene expression program to control neurite outgrowth. ELife, 2020, 9, .	6.0	23
46	FBXO11-mediated proteolysis of BAHD1 relieves PRC2-dependent transcriptional repression in erythropoiesis. Blood, 2021, 137, 155-167.	1.4	22
47	Activation of \hat{I}^3 -globin gene expression by GATA1 and NF-Y in hereditary persistence of fetal hemoglobin. Nature Genetics, 2021, 53, 1177-1186.	21.4	21
48	SLC38A2 provides proline to fulfill unique synthetic demands arising during osteoblast differentiation and bone formation. ELife, 2022, 11, .	6.0	21
49	14-3-3ζ–TRAF5 axis governs interleukin-17A signaling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25008-25017.	7.1	18
50	NSD1 mediates antagonism between SWI/SNF and polycomb complexes and is required for transcriptional activation upon EZH2 inhibition. Molecular Cell, 2022, 82, 2472-2489.e8.	9.7	18
51	Targeting KDM4 for treating PAX3-FOXO1–driven alveolar rhabdomyosarcoma. Science Translational Medicine, 2022, 14, .	12.4	16
52	Expanding the Repertoire of Target Sites for Zinc Finger Nuclease-mediated Genome Modification. Molecular Therapy - Nucleic Acids, 2013, 2, e88.	5.1	15
53	Profiling chromatin accessibility in pediatric acute lymphoblastic leukemia identifies subtype-specific chromatin landscapes and gene regulatory networks. Leukemia, 2021, 35, 3078-3091.	7.2	15
54	Cutting Edge: Caspase-8 Is a Linchpin in Caspase-3 and Gasdermin D Activation to Control Cell Death, Cytokine Release, and Host Defense during Influenza A Virus Infection. Journal of Immunology, 2021, 207, 2411-2416.	0.8	14

#	Article	IF	CITATIONS
55	Ca2+-mediated mitochondrial inner membrane permeabilization induces cell death independently of Bax and Bak. Cell Death and Differentiation, 2022, 29, 1318-1334.	11.2	14
56	A stable but reversible integrated surrogate reporter for assaying CRISPR/Cas9-stimulated homology-directed repair. Journal of Biological Chemistry, 2017, 292, 6148-6162.	3.4	13
57	CCL22 mutations drive natural killer cell lymphoproliferative disease by deregulating microenvironmental crosstalk. Nature Genetics, 2022, 54, 637-648.	21.4	13
58	Integrative network analysis reveals USP7 haploinsufficiency inhibits E-protein activity in pediatric T-lineage acute lymphoblastic leukemia (T-ALL). Scientific Reports, 2021, 11, 5154.	3.3	10
59	The Heme-Regulated Inhibitor Pathway Modulates Susceptibility of Poor Prognosis B-Lineage Acute Leukemia to BH3-Mimetics. Molecular Cancer Research, 2021, 19, 636-650.	3.4	8
60	Caspase-6 promotes activation of the caspase-11-NLRP3 inflammasome during gram-negative bacterial infections. Journal of Biological Chemistry, 2021, 297, 101379.	3.4	8
61	Amino acid stress response genes promote L-asparaginase resistance in pediatric acute lymphoblastic leukemia. Blood Advances, 2022, 6, 3386-3397.	5.2	8
62	A Practical Guide to Genome Editing Using Targeted Nuclease Technologies., 2019, 9, 665-714.		7
63	The nonreceptor tyrosine kinase SRMS inhibits autophagy and promotes tumor growth by phosphorylating the scaffolding protein FKBP51. PLoS Biology, 2021, 19, e3001281.	5.6	7
64	Therapeutic gene editing strategies using CRISPR-Cas9 for the \hat{l}^2 -hemoglobinopathies. Journal of Biomedical Research, 2021, 35, 115.	1.6	6
65	SLFN11 is Widely Expressed in Pediatric Sarcoma and Induces Variable Sensitization to Replicative Stress Caused By DNA-Damaging Agents. Molecular Cancer Therapeutics, 2021, 20, 2151-2165.	4.1	6
66	Foxp3 enhancers synergize to maximize regulatory T cell suppressive capacity. Journal of Experimental Medicine, 2021, 218, .	8.5	5
67	MEKK3-MEK5-ERK5 signaling promotes mitochondrial degradation. Cell Death Discovery, 2020, 6, 107.	4.7	4
68	The MLL3/4 complexes and MiDAC co-regulate H4K20ac to control a specific gene expression program. Life Science Alliance, 2022, 5, e202201572.	2.8	4
69	It's CRISPR Clear: Off-Target Study Misses the Mark. CRISPR Journal, 2018, 1, 130-131.	2.9	3
70	A proteomics approach for the identification of cullin-9 (CUL9) related signaling pathways in induced pluripotent stem cell models. PLoS ONE, 2021, 16, e0248000.	2.5	3
71	Donor Plasmid Design for Codon and Single Base Genome Editing Using Zinc Finger Nucleases. Methods in Molecular Biology, 2015, 1239, 219-229.	0.9	3
72	TERT Expression in Wilms Tumor Is Regulated by Promoter Mutation or Hypermethylation, WT1, and N-MYC. Cancers, 2022, 14, 1655.	3.7	3

#	Article	IF	CITATIONS
73	Assessing Off-Target Editing of CRISPR-Cas9 Systems. CRISPR Journal, 2020, 3, 430-432.	2.9	2
74	Cancer Screens: Better Together. CRISPR Journal, 2020, 3, 12-14.	2.9	1
75	CRISPR-Cas9 Genome Editing of \hat{I}^3 -Globin Promoters in Human Hematopoietic Stem Cells to Induce Erythrocyte Fetal Hemoglobin for Treatment of \hat{I}^2 -Hemoglobinopathies. Blood, 2019, 134, 2066-2066.	1.4	1
76	In Vivo CRISPR/Cas9-Based Targeted Disruption and Knockin of a Long Noncoding RNA. Methods in Molecular Biology, 2021, 2254, 305-321.	0.9	1
77	Mapping the Glucocorticoid Gene Regulatory Network and Alterations That Contribute to Steroid Resistance in Childhood Acute Lymphoblastic Leukemia. Blood, 2021, 138, 674-674.	1.4	1
78	Combined +58 and +55 <i>BCL11A</i> enhancer Editing Yields Exceptional Efficiency, Specificity and HbF Induction in Human and NHP Preclinical Models. Blood, 2021, 138, 1852-1852.	1.4	1
79	Genome Editing in Somatic Cells Using Zinc Finger Nucleases and Transcription Activator-Like Effector Nucleases. , 2014, , 369-378.		O
80	Non-Coding HOX Fusions in Pediatric Non-Down Syndrome Acute Megakaryoblastic Leukemia. Blood, 2019, 134, 533-533.	1.4	0
81	Loss of PTEN in Pediatric AML Confers Sensitivity to PARP Inhibition. Blood, 2021, 138, 3446-3446.	1.4	O
82	Amino Acid Stress Response Genes Promote L-Asparaginase Resistance in Pediatric Acute Lymphoblastic Leukemia. Blood, 2021, 138, 3304-3304.	1.4	O