
Bruno Cerabolini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4211863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Small and slow is safe: On the drought tolerance of tropical tree species. Global Change Biology, 2022, 28, 2622-2638.	9.5	35
2	Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology and Evolution, 2022, 6, 36-50.	7.8	89
3	Identifying typical and early warning species by the combination of functional-based diagnostic species and dark diversity. Biodiversity and Conservation, 2022, 31, 1735-1753.	2.6	6
4	Global relationships in tree functional traits. Nature Communications, 2022, 13, .	12.8	29
5	High exposure of global tree diversity to human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
6	Different functional characteristics can explain different dimensions of plant invasion success. Journal of Ecology, 2021, 109, 1524-1536.	4.0	14
7	The Consequences of Glacier Retreat Are Uneven Between Plant Species. Frontiers in Ecology and Evolution, 2021, 8, .	2.2	29
8	The association of leaf sulfur content with the leaf economics spectrum and plant adaptive strategies. Functional Plant Biology, 2021, 48, 924-935.	2.1	14
9	Climatic and evolutionary contexts are required to infer plant life history strategies from functional traits at a global scale. Ecology Letters, 2021, 24, 970-983.	6.4	19
10	Different sets of traits explain abundance and distribution patterns of European plants at different spatial scales. Journal of Vegetation Science, 2021, 32, e13016.	2.2	15
11	A new method for indicator species analysis in the framework of multivariate analysis of variance. Journal of Vegetation Science, 2021, 32, e13013.	2.2	3
12	Plant functional and taxonomic diversity in European grasslands along climatic gradients. Journal of Vegetation Science, 2021, 32, e13027.	2.2	15
13	Dimensions of invasiveness: Links between local abundance, geographic range size, and habitat breadth in Europe's alien and native floras. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	47
14	Shedding light on typical species: implications for habitat monitoring. Plant Sociology, 2021, 58, 157-166.	2.4	26
15	Habitat type and island identity as drivers of community assembly in an archipelago. Journal of Vegetation Science, 2021, 32, .	2.2	6
16	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	9.5	1,038
17	Implementation of IUCN criteria for the definition of the Red List of Ecosystems in Italy. Plant Biosystems, 2020, 154, 1007-1011.	1.6	11
18	From abundance-based to functional-based indicator species. Ecological Indicators, 2020, 118, 106761.	6.3	9

#	Article	IF	CITATIONS
19	Community-level variation in plant functional traits and ecological strategies shapes habitat structure along succession gradients in alpine environment. Community Ecology, 2020, 21, 55-65.	0.9	33
20	Role of photo- and biodegradation of two PAHs on leaves: Modelling the impact on air quality ecosystem services provided by urban trees. Science of the Total Environment, 2020, 739, 139893.	8.0	14
21	Allometric coâ€variation of xylem and stomata across diverse woody seedlings. Plant, Cell and Environment, 2020, 43, 2301-2310.	5.7	13
22	Assessing the reliability of predicted plant trait distributions at the global scale. Global Ecology and Biogeography, 2020, 29, 1034-1051.	5.8	36
23	Global plant trait relationships extend to the climatic extremes of the tundra biome. Nature Communications, 2020, 11, 1351.	12.8	52
24	New national and regional Annex I Habitat records: from #13 to #15. Plant Sociology, 2020, 57, 65-74.	2.4	8
25	Plant–environment interactions through a functional traits perspective: a review of Italian studies. Plant Biosystems, 2019, 153, 853-869.	1.6	48
26	Alien plant species invade by occupying similar functional spaces to native species. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 257, 151419.	1.2	28
27	The functional trait spectrum of European temperate grasslands. Journal of Vegetation Science, 2019, 30, 777-788.	2.2	17
28	Plant trait variation along environmental indicators to infer global change impacts. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 254, 113-121.	1.2	20
29	Traditional plant functional groups explain variation in economic but not sizeâ€related traits across the tundra biome. Global Ecology and Biogeography, 2019, 28, 78-95.	5.8	49
30	A low-cost and repeatable procedure for modelling the regional distribution of Natura 2000 terrestrial habitats. Journal of Maps, 2019, 15, 79-88.	2.0	8
31	Inter- and intraspecific variation in leaf economic traits in wheat and maize. AoB PLANTS, 2018, 10, ply006.	2.3	31
32	A new method for quantifying the phylogenetic redundancy of biological communities. Oecologia, 2018, 186, 339-346.	2.0	10
33	A methodology to derive global maps of leaf traits using remote sensing and climate data. Remote Sensing of Environment, 2018, 218, 69-88.	11.0	104
34	Plant functional trait change across a warming tundra biome. Nature, 2018, 562, 57-62.	27.8	451
35	Multiple facets of biodiversity drive the diversity–stability relationship. Nature Ecology and Evolution, 2018, 2, 1579-1587.	7.8	296
36	Growthâ€form and spatiality driving the functional difference of native and alien aquatic plants in Europe. Ecology and Evolution, 2017, 7, 950-963.	1.9	35

#	Article	IF	CITATIONS
37	SoilPlusVeg: An integrated air-plant-litter-soil model to predict organic chemical fate and recycling in forests. Science of the Total Environment, 2017, 595, 169-177.	8.0	36
38	Ecology and floristic composition of heathlands in the Po basin and the Southern Alps (NW Italy). Botany Letters, 2017, 164, 433-444.	1.4	3
39	Mapping local and global variability in plant trait distributions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10937-E10946.	7.1	159
40	A global method for calculating plant <scp>CSR</scp> ecological strategies applied across biomes worldâ€wide. Functional Ecology, 2017, 31, 444-457.	3.6	330
41	Why are many anthropogenic agroecosystems particularly species-rich?. Plant Biosystems, 2016, 150, 550-557.	1.6	39
42	Measuring the functional redundancy of biological communities: a quantitative guide. Methods in Ecology and Evolution, 2016, 7, 1386-1395.	5.2	197
43	The global spectrum of plant form and function. Nature, 2016, 529, 167-171.	27.8	2,022
44	Integrating the Water Framework Directive into the Habitats Directive: Analysis of distribution patterns of lacustrine EU habitats in lakes of Lombardy (northern Italy). Journal of Limnology, 2016, 76, .	1.1	14
45	Pea seed extracts stimulate germination of the terrestrial orchid <i>Ophrys apifera</i> Huds. during a habitat restoration project. Plant Biosystems, 2015, 149, 54-60.	1.6	4
46	A classical measure of phylogenetic dissimilarity and its relationship with beta diversity. Basic and Applied Ecology, 2015, 16, 10-18.	2.7	15
47	Estimation of Polycyclic Aromatic Hydrocarbon Variability in Air Using High Volume, Film, and Vegetation as Samplers. Environmental Science & Technology, 2015, 49, 5520-5528.	10.0	19
48	Towards more ecologically realistic scenarios of plant uptake modelling for chemicals: PAHs in a small forest. Science of the Total Environment, 2015, 505, 329-337.	8.0	44
49	An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants. Ecology and Evolution, 2014, 4, 2799-2811.	1.9	53
50	How well do seed production traits correlate with leaf traits, whole-plant traits and plant ecological strategies?. Plant Ecology, 2014, 215, 1351-1359.	1.6	38
51	The intimacy between sexual traits and Grime's CSR strategies for orchids coexisting in semi-natural calcareous grassland at the Olive Lawn. Plant Ecology, 2014, 215, 495-505.	1.6	24
52	Litter quality, decomposition rates and saprotrophic mycoflora in Fallopia japonica (Houtt.) Ronse Decraene and in adjacent native grassland vegetation. Acta Oecologica, 2014, 54, 29-35.	1.1	55
53	Forest Filter Effect: Role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmospheric Environment, 2013, 74, 378-384.	4.1	188
54	Allocating <scp>CSR</scp> plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Functional Ecology, 2013, 27, 1002-1010.	3.6	223

#	Article	IF	CITATIONS
55	Comment on "Productivity Is a Poor Predictor of Plant Species Richness― Science, 2012, 335, 1441-1441.	12.6	49
56	Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Annals of Botany, 2012, 109, 1047-1053.	2.9	78
57	Is leaf dry matter content a better predictor of soil fertility than specific leaf area?. Annals of Botany, 2011, 108, 1337-1345.	2.9	219
58	Species evenness affects ecosystem processes in situ via diversity in the adaptive strategies of dominant species. Plant Ecology, 2010, 207, 333-345.	1.6	37
59	Can CSR classification be generally applied outside Britain?. Plant Ecology, 2010, 210, 253-261.	1.6	98
60	Outbreeding and asymbiotic germination in the conservation of the endangered Italian endemic orchid <i>Ophrys benacensis</i> . Plant Biosystems, 2010, 144, 121-127.	1.6	15
61	Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog?. Annals of Botany, 2010, 105, 573-584.	2.9	121
62	Plant adaptive responses during primary succession are associated with functional adaptations in ground beetles on deglaciated terrain. Community Ecology, 2010, 11, 223-231.	0.9	54
63	The survival strategy of the alpine endemic PrimulaÂglaucescens is fundamentally unchanged throughout its climate envelope despite superficial phenotypic variability. Plant Ecology, 2009, 204, 1-10.	1.6	12
64	Ecological factors affecting plant species and travertine deposition in petrifying springs from an Italian â€~Natura 2000' site. Botanica Helvetica, 2009, 119, 113-123.	1.1	7
65	Are morpho-functional traits reliable indicators of inherent relative growth rate for prealpine calcareous grassland species?. Plant Biosystems, 2008, 142, 60-65.	1.6	10
66	Seed germination in a narrow endemic species (Telekia speciosissima, Asteraceae): Implications forex situconservation. Plant Biosystems, 2007, 141, 56-61.	1.6	13
67	The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosystems, 2007, 141, 337-343.	1.6	39
68	Disturbance is the principal α-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. Journal of Ecology, 2007, 95, 698-706.	4.0	101
69	Accumulation of Persistent Organic Pollutants in Canopies of Different Forest Types:Â Role of Species Composition and Altitudinal-Temperature Gradient. Environmental Science & Technology, 2006, 40, 6580-6586.	10.0	33
70	The functional basis of a primary succession resolved by CSR classification. Oikos, 2006, 112, 10-20.	2.7	196
71	Quantifying Relative Extinction Risks and Targeting Intervention for the Orchid Flora of a Natural Park in the European Prealps. Conservation Biology, 2006, 20, 1804-1810.	4.7	18
72	From ancient genes to modern communities: the cellular stress response and the evolution of plant strategies. Functional Ecology, 2005, 19, 763-776.	3.6	60

#	Article	IF	CITATIONS
73	A functional method for classifying European grasslands for use in joint ecological and economic studies. Basic and Applied Ecology, 2005, 6, 119-131.	2.7	24
74	Seed germination and conservation of endangered species from the Italian Alps: Physoplexis comosa and Primula glaucescens. Biological Conservation, 2004, 117, 351-356.	4.1	68
75	Seed size, shape and persistence in soil: a test on Italian flora from Alps to Mediterranean coasts. Seed Science Research, 2003, 13, 75-85.	1.7	106
76	Conifer needles as passive biomonitors of the spatial and temporal distribution of DDT from a point source. Chemosphere, 2003, 52, 789-797.	8.2	66
77	Vegetation and environmental factors during primary succession on glacier forelands: Some outlines from the Italian Alps. Plant Biosystems, 2001, 135, 295-310.	1.6	39
78	Leaf structure and defence control litter decomposition rate across species and life forms in regional floras on two continents. New Phytologist, 1999, 143, 191-200.	7.3	424
79	Grado di Naturalità e Fattori Antropici in Una Zona di Particolare Rilevanza Ambientale: Il Caso della Bassa Val Bregaglia. Giornale Botanico Italiano (Florence, Italy: 1962), 1996, 130, 440-440.	0.0	0
80	Elemento Boreale e Vegetazione di <i>Vaccinio-Piceetea</i> sul Versante Meridionale delle Alpi Orobie. Giornale Botanico Italiano (Florence, Italy: 1962), 1996, 130, 480-480.	0.0	0
81	Le Fitocenosi a <i>Fagus Sylvatica</i> L. Dell'Alto Lario Occidentale: Caratterizzazione e Significato Fitogeografico (Nota Preliminare). Giornale Botanico Italiano (Florence, Italy: 1962), 1996, 130, 479-479.	0.0	0
82	Studio Delle Variazioni Recenti del Limite Degli Alberi in val Ventina (Alpi Centrali, Sondrio). Giornale Botanico Italiano (Florence, Italy: 1962), 1996, 130, 512-512.	0.0	1
83	Vegetazione. Giornale Botanico Italiano (Florence, Italy: 1962), 1993, 127, 705-725.	0.0	0
84	Vegetazione. Giornale Botanico Italiano (Florence, Italy: 1962), 1992, 126, 438-454.	0.0	0