Gregory M Barton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4211838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toll-like receptors control activation of adaptive immune responses. Nature Immunology, 2001, 2, 947-950.	7.0	1,283
2	Toll-Like Receptor Signaling Pathways. Science, 2003, 300, 1524-1525.	6.0	1,139
3	TIRAP: an adapter molecule in the Toll signaling pathway. Nature Immunology, 2001, 2, 835-841.	7.0	916
4	A mechanism for the initiation of allergen-induced T helper type 2 responses. Nature Immunology, 2008, 9, 310-318.	7.0	837
5	CD14 Controls the LPS-Induced Endocytosis of Toll-like Receptor 4. Cell, 2011, 147, 868-880.	13.5	765
6	The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature, 2002, 420, 329-333.	13.7	764
7	A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nature Reviews Immunology, 2009, 9, 535-542.	10.6	611
8	Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nature Immunology, 2006, 7, 49-56.	7.0	598
9	The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature, 2008, 456, 658-662.	13.7	538
10	Nucleic Acid Recognition by the Innate Immune System. Annual Review of Immunology, 2011, 29, 185-214.	9.5	493
11	MyD88: a central player in innate immune signaling. F1000prime Reports, 2014, 6, 97.	5.9	451
12	A calculated response: control of inflammation by the innate immune system. Journal of Clinical Investigation, 2008, 118, 413-420.	3.9	395
13	Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nature Immunology, 2009, 10, 1200-1207.	7.0	367
14	<i>Akkermansia muciniphila</i> induces intestinal adaptive immune responses during homeostasis. Science, 2019, 364, 1179-1184.	6.0	347
15	Control of adaptive immune responses by Toll-like receptors. Current Opinion in Immunology, 2002, 14, 380-383.	2.4	314
16	Nucleic acid recognition by Toll-like receptors is coupled to stepwise processing by cathepsins and asparagine endopeptidase. Journal of Experimental Medicine, 2011, 208, 643-651.	4.2	276
17	Retroviral delivery of small interfering RNA into primary cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14943-14945.	3.3	271
18	A Map of Toll-like Receptor Expression in the Intestinal Epithelium Reveals Distinct Spatial, Cell Type-Specific, and Temporal Patterns. Immunity, 2018, 49, 560-575.e6.	6.6	240

GREGORY M BARTON

#	Article	IF	CITATIONS
19	UNC93B1 mediates differential trafficking of endosomal TLRs. ELife, 2013, 2, e00291.	2.8	237
20	Maternal IgG and IgA Antibodies Dampen Mucosal T Helper Cell Responses in Early Life. Cell, 2016, 165, 827-841.	13.5	231
21	TLR Signaling Is Required for Salmonella typhimurium Virulence. Cell, 2011, 144, 675-688.	13.5	217
22	Viral recognition by Toll-like receptors. Seminars in Immunology, 2007, 19, 33-40.	2.7	187
23	Tissue-Resident Macrophages Are Locally Programmed for Silent Clearance of Apoptotic Cells. Immunity, 2017, 47, 913-927.e6.	6.6	187
24	Trafficking of endosomal Toll-like receptors. Trends in Cell Biology, 2014, 24, 360-369.	3.6	154
25	Toll-like receptors: key players in antiviral immunity. Current Opinion in Virology, 2011, 1, 447-454.	2.6	134
26	Regulation of the nucleic acid-sensing Toll-like receptors. Nature Reviews Immunology, 2022, 22, 22, 224-235.	10.6	132
27	Nucleic acid-sensing TLRs: trafficking and regulation. Current Opinion in Immunology, 2017, 44, 26-33.	2.4	112
28	Requirement for Diverse, Low-Abundance Peptides in Positive Selection of T Cells. Science, 1999, 283, 67-70.	6.0	109
29	Differences in codon bias and GC content contribute to the balanced expression of TLR7 and TLR9. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1362-71.	3.3	102
30	Dynamic Tuning of T Cell Reactivity by Self-Peptide–Major Histocompatibility Complex Ligands. Journal of Experimental Medicine, 2001, 193, 1179-1188.	4.2	100
31	Neutrophils promote CXCR3-dependent itch in the development of atopic dermatitis. ELife, 2019, 8, .	2.8	99
32	Transmembrane Mutations in Toll-like Receptor 9 Bypass the Requirement for Ectodomain Proteolysis and Induce Fatal Inflammation. Immunity, 2011, 35, 721-732.	6.6	98
33	UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature, 2019, 575, 366-370.	13.7	78
34	Nucleic acid sensing Toll-like receptors in autoimmunity. Current Opinion in Immunology, 2011, 23, 3-9.	2.4	65
35	Genotypic and Phenotypic Diversity among Human Isolates of Akkermansia muciniphila. MBio, 2021, 12,	1.8	60
36	Linking Toll-like receptors to IFN-α/β expression. Nature Immunology, 2003, 4, 432-433.	7.0	53

3

GREGORY M BARTON

#	Article	IF	CITATIONS
37	Release from UNC93B1 reinforces the compartmentalized activation of select TLRs. Nature, 2019, 575, 371-374.	13.7	51
38	B cell receptor and Toll-like receptor signaling coordinate to control distinct B-1 responses to both self and the microbiota. ELife, 2019, 8, .	2.8	45
39	Internalization and TLRâ€dependent type I interferon production by monocytes in response to <i>Toxoplasma gondii</i> . Immunology and Cell Biology, 2014, 92, 872-881.	1.0	41
40	Emerging Principles Governing Signal Transduction by Pattern-Recognition Receptors: Table 1 Cold Spring Harbor Perspectives in Biology, 2015, 7, a016253.	2.3	41
41	Cofactors Required for TLR7- and TLR9-Dependent Innate Immune Responses. Cell Host and Microbe, 2012, 11, 306-318.	5.1	40
42	Toll-like Receptor-Deficient Mice Reveal How Innate Immune Signaling Influences Salmonella Virulence Strategies. Cell Host and Microbe, 2014, 15, 203-213.	5.1	39
43	Cas9+ conditionally-immortalized macrophages as a tool for bacterial pathogenesis and beyond. ELife, 2019, 8, .	2.8	22
44	Toll signaling: RIPping off the TNF pathway. Nature Immunology, 2004, 5, 472-474.	7.0	21
45	Suppression of TLR9 Immunostimulatory Motifs in the Genome of a Gammaherpesvirus. Journal of Immunology, 2011, 187, 887-896.	0.4	21
46	The impact of Toll-like receptors on bacterial virulence strategies. Current Opinion in Microbiology, 2013, 16, 17-22.	2.3	21
47	Positive selection of self-MHC-reactive T cells by individual peptide-MHC class II complexes. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6937-6942.	3.3	20
48	Compartment-Specific Control of Signaling from a DNA-Sensing Immune Receptor. Science Signaling, 2010, 3, pe45.	1.6	20
49	An altered invariant chain protein with an antigenic peptide in place of CLIP forms SDS-stable complexes with class II alphabeta dimers and facilitates highly efficient peptide loading. International Immunology, 1998, 10, 1159-1165.	1.8	16
50	Dysregulation of TLR9 in neonates leads to fatal inflammatory disease driven by IFN-Î ³ . Proceedings of the United States of America, 2020, 117, 3074-3082.	3.3	15
51	Evaluating peptide repertoires within the context of thymocyte development. Seminars in Immunology, 1999, 11, 417-422.	2.7	13
52	Unfolding new roles for XBP1 in immunity. Nature Immunology, 2010, 11, 365-367.	7.0	13
53	Local TNFR1 Signaling Licenses Murine Neutrophils for Increased TLR-Dependent Cytokine and Eicosanoid Production. Journal of Immunology, 2017, 198, 2865-2875.	0.4	11
54	No antigen-presentation defect in Unc93b13d/3d (3d) mice. Nature Immunology, 2013, 14, 1101-1102.	7.0	7

#	Article	IF	CITATIONS
55	MicroRNAs and LPS: Developing a Relationship in the Neonatal Gut. Cell Host and Microbe, 2010, 8, 303-304.	5.1	6
56	Toll-like receptors form different complexes with UNC93B1. Nature Structural and Molecular Biology, 2021, 28, 121-123.	3.6	5
57	TLR5 Stops Commensals in Their Tracks. Cell Host and Microbe, 2013, 14, 488-490.	5.1	2
58	Toll-Like Receptors and Control of Adaptive Immunity. , 0, , 271-285.		1
59	Editorial overview: Communities in immune cell signaling. Current Opinion in Immunology, 2021, 73, iii-iv.	2.4	1