Temel SavaÅKan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4211658/publications.pdf

Version: 2024-02-01

41 papers 1,615 citations

22 h-index

304368

301761 39 g-index

42 all docs 42 docs citations

42 times ranked 501 citing authors

#	Article	IF	CITATIONS
1	Effect of Working Conditions on the Lubricated Wear Behavior of Zn–40Al–2Cu–2Si Alloy in the As-Cast and T6 Heat-Treated States. Journal of Tribology, 2022, 144, .	1.0	3
2	Effect of heat treatment on mechanical and wear properties of Zn–40Al–2Cu–2Si alloy. Transactions of Nonferrous Metals Society of China, 2021, 31, 2651-2663.	1.7	4
3	Determination of Dry Wear Properties of Zn-30Al-Cu Bearing Alloys in Terms of Their Copper Content and Working Conditions Including Pressure and Sliding Velocity. Journal of Materials Engineering and Performance, 2020, 29, 4794-4803.	1.2	3
4	Zn-15Al-3Cu-1Si alaşımı ve SAE 660 bronzunun yağlı durumdaki aşınma karakteristikleri. Journal of th Faculty of Engineering and Architecture of Gazi University, 2018, 33, .	he 0.3	5
5	Effects of Contact Pressure and Sliding Speed on the Unlubricated Friction and Wear Properties of Zn-15Al-3Cu-1Si Alloy. Tribology Transactions, 2016, 59, 1114-1121.	1.1	18
6	Relationships between mechanical and tribological properties of Zn-15Al-based ternary and quaternary alloys. International Journal of Materials Research, 2016, 107, 646-652.	0.1	23
7	Effect of quench–ageing treatment on the microstructure and properties of Zn-15Al-3Cu alloy. International Journal of Materials Research, 2015, 106, 481-487.	0.1	16
8	Effects of contact pressure and sliding distance on the lubricated friction and wear properties of Zn-25Al-3Cu alloy: A comparative study with SAE 65 bronze. International Journal of Materials Research, 2015, 106, 1060-1066.	0.1	4
9	Tribological properties of Zn-25Al-3Cu-1Si alloy. Tribology International, 2015, 81, 105-111.	3.0	11
10	A comparative study of lubricated friction and wear behaviour of Al–25Zn–3Cu–3Si bearing alloy. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228, 896-903.	1.0	7
11	Structure and mechanical properties of Zn-(5–25) Al alloys. International Journal of Materials Research, 2014, 105, 1084-1089.	0.1	19
12	Fatigue behaviour of Al–25Zn–3Cu alloy. Materials Science and Technology, 2014, 30, 938-943.	0.8	7
13	Friction and Wear Properties of Zn-25Al-Based Bearing Alloys. Tribology Transactions, 2014, 57, 435-444.	1.1	20
14	Microstructure and mechanical properties of Zn–15Al-based ternary and quaternary alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 603, 52-57.	2.6	59
15	Influence of Test Conditions on the Lubricated Friction and Wear Behaviour of Al–25Zn–3Cu Alloy. Tribology Letters, 2010, 37, 175-182.	1.2	16
16	Dry Sliding Friction and Wear Properties of Al–25Zn–3Cu–(0–5)Si Alloys in the As-Cast and Heat-Treated Conditions. Tribology Letters, 2010, 40, 327-336.	1.2	49
17	Dry sliding friction and wear properties of Al–25Zn–3Cu–3Si alloy. Tribology International, 2010, 43, 1346-1352.	3.0	33
18	Effect of nickel additions on the mechanical and sliding wear properties of Al–40Zn–3Cu alloy. Wear, 2010, 268, 565-570.	1.5	39

#	Article	IF	Citations
19	Developing aluminium–zinc-based a new alloy for tribological applications. Journal of Materials Science, 2009, 44, 1969-1976.	1.7	38
20	Mechanical and tribological properties of Al–40Zn–Cu alloys. Tribology International, 2009, 42, 176-182.	3.0	51
21	Effects of pressure and sliding speed on the friction and wear properties of Al–40Zn–3Cu–2Si alloy: A comparative study with SAE 65 bronze. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 496, 517-523.	2.6	34
22	Effects of Silicon Content on the Mechanical Properties and Lubricated Wear Behaviour of Al–40Zn–3Cu–(0–5)Si Alloys. Tribology Letters, 2008, 29, 221-227.	1.2	27
23	An investigation of lubricated friction and wear properties of Zn–40Al–2Cu–2Si alloy in comparison with SAE 65 bearing bronze. Wear, 2008, 264, 920-928.	1.5	56
24	An examination of friction and sliding wear properties of Zn–40Al–2Cu–2Si alloy in case of oil cut off. Tribology International, 2008, 41, 9-16.	3.0	29
25	Effects of silicon content on the microstructural features and mechanical and sliding wear properties of Zn–40Al–2Cu–(0–5)Si alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 404, 259-269.	2.6	65
26	Fatigue properties of zinc–aluminium alloys in 3.5% NaCl and 1% HCl solutions. International Journal of Fatigue, 2004, 26, 103-110.	2.8	18
27	Fatigue behaviour of monotectoid-based Zn–Al–Cu alloys in 3.5% NaCl and 1% HCl solutions. Materials Characterization, 2004, 52, 269-278.	1.9	22
28	Effect of copper content on the mechanical and sliding wear properties of monotectoid-based zinc-aluminium-copper alloys. Tribology International, 2004, 37, 45-50.	3.0	104
29	Effects of silicon content on the mechanical and tribological properties of monotectoid-based zinc–aluminium–silicon alloys. Wear, 2004, 257, 377-388.	1.5	57
30	Effect of Copper Content on the Mechanical and Tribological Properties of ZnAl27-Based Alloys. Tribology Letters, 2003, 15, 257-263.	1.2	45
31	Relationships between cooling rate, copper content and mechanical properties of monotectoid based Zn–Al–Cu alloys. Materials Characterization, 2003, 51, 259-270.	1.9	54
32	Sliding wear of cast zinc-based alloy bearings under static and dynamic loading conditions. Wear, 2002, 252, 693-703.	1.5	68
33	Dry sliding friction and wear properties of zinc-based alloys. Wear, 2002, 252, 894-901.	1.5	115
34	Fatigue behaviour of Zn–Al casting alloys. Materials Science and Technology, 2001, 17, 681-685.	0.8	21
35	Decomposition of Zn–Al alloys on quench–aging. Materials Science and Technology, 1990, 6, 695-704.	0.8	40
36	On the wear and failure of high speed roller bearings. Wear, 1987, 116, 361-380.	1.5	13

Temel SavaÅŸkan

#	Article	IF	CITATIONS
37	Mechanical properties and lubricated wear of Zn-25Al-based alloys. Wear, 1987, 116, 211-224.	1.5	115
38	Wear resistance and microstructure of Zn-Al-Si and Zn-Al-Cu alloys. Wear, 1987, 117, 79-89.	1.5	140
39	Metallography of Zinc-25 % Al Based Alloys in the As-Cast and Aged Conditions / Metallographie von Zink-25 %-Al-Legierungen im Gußzustand und nach Alterungsbehandlungen. Praktische Metallographie/Practical Metallography, 1987, 24, 204-221.	0.1	22
40	Comparative wear behaviour of Zn-Al-based alloys in an automotive engine application. Wear, 1984, 98, 151-161.	1.5	143
41	Wear in a high-speed roller bearing. Metals Technology, 1984, 11, 530-534.	0.3	2