
Henry M Sucov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4211530/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tissue Origins and Interactions in the Mammalian Skull Vault. Developmental Biology, 2002, 241, 106-116.	0.9	673
2	Generation of a prostate epithelial cell-specific Cre transgenic mouse model for tissue-specific gene ablation. Mechanisms of Development, 2001, 101, 61-69.	1.7	335
3	An Essential Role for Retinoid Receptors RARβ and RXRγ In Long-Term Potentiation and Depression. Neuron, 1998, 21, 1353-1361.	3.8	305
4	Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration. Nature Genetics, 2017, 49, 1346-1353.	9.4	252
5	Hepatocyte-Specific Mutation Establishes Retinoid X Receptor α as a Heterodimeric Integrator of Multiple Physiological Processes in the Liver. Molecular and Cellular Biology, 2000, 20, 4436-4444.	1.1	227
6	Epicardial Induction of Fetal Cardiomyocyte Proliferation via a Retinoic Acid-Inducible Trophic Factor. Developmental Biology, 2002, 250, 198-207.	0.9	207
7	Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology, 2009, 49, 998-1011.	3.6	201
8	The role of erythropoietin in regulating angiogenesis. Developmental Biology, 2004, 276, 101-110.	0.9	194
9	IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development (Cambridge), 2011, 138, 1795-1805.	1.2	182
10	Msx2 and Twist cooperatively control the development of the neural crest-derived skeletogenic mesenchyme of the murine skull vault. Development (Cambridge), 2003, 130, 6131-6142.	1.2	170
11	Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature, 2008, 452, 759-763.	13.7	167
12	Combined deficiencies of Msx1 and Msx2 cause impaired patterning and survival of the cranial neural crest. Development (Cambridge), 2005, 132, 4937-4950.	1.2	164
13	A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. Developmental Biology, 1987, 120, 499-506.	0.9	143
14	Retinoic acid can enhance conversion of naive into regulatory T cells independently of secreted cytokines. Journal of Experimental Medicine, 2009, 206, 2131-2139.	4.2	139
15	Retinoic acid and retinoic acid receptors in development. Molecular Neurobiology, 1995, 10, 169-184.	1.9	131
16	Endocardium Minimally Contributes to Coronary Endothelium in the Embryonic Ventricular Free Walls. Circulation Research, 2016, 118, 1880-1893.	2.0	131
17	lgf Signaling is Required for Cardiomyocyte Proliferation during Zebrafish Heart Development and Regeneration. PLoS ONE, 2013, 8, e67266.	1.1	124
18	Adipogenesis and epicardial adipose tissue: A novel fate of the epicardium induced by mesenchymal transformation and PPARÎ ³ activation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2070-2075.	3.3	123

HENRY M SUCOV

#	Article	IF	CITATIONS
19	Chemokine-Guided Angiogenesis Directs Coronary Vasculature Formation in Zebrafish. Developmental Cell, 2015, 33, 442-454.	3.1	117
20	A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. Developmental Biology, 1987, 120, 507-519.	0.9	115
21	Compound mutants for retinoic acid receptor (RAR)β and RARα1 reveal developmental functions for multiple RARβ isoforms. Mechanisms of Development, 1996, 55, 33-44.	1.7	110
22	Normal fate and altered function of the cardiac neural crest cell lineage in retinoic acid receptor mutant embryos. Mechanisms of Development, 2002, 117, 115-122.	1.7	95
23	CXCL12 Signaling Is Essential for Maturation of the Ventricular Coronary Endothelial Plexus and Establishment of Functional Coronary Circulation. Developmental Cell, 2015, 33, 469-477.	3.1	93
24	Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial <i>Igf2</i> . Development (Cambridge), 2011, 138, 139-148.	1.2	87
25	Requirement for AP-2α in cardiac outflow tract morphogenesis. Mechanisms of Development, 2002, 110, 139-149.	1.7	85
26	Msx1 and Msx2 regulate survival of secondary heart field precursors and post-migratory proliferation of cardiac neural crest in the outflow tract. Developmental Biology, 2007, 308, 421-437.	0.9	84
27	Cardiovascular malformations with normal smooth muscle differentiation in neural crest-specific type II TGFÎ ² receptor (Tgfbr2) mutant mice. Developmental Biology, 2006, 289, 420-429.	0.9	83
28	Defective ALK5 signaling in the neural crest leads to increased postmigratory neural crest cell apoptosis and severe outflow tract defects. BMC Developmental Biology, 2006, 6, 51.	2.1	80
29	Msx1 and Msx2are required for endothelial-mesenchymal transformation of the atrioventricular cushions and patterning of the atrioventricular myocardium. BMC Developmental Biology, 2008, 8, 75.	2.1	78
30	Retinoic Acid Regulates Differentiation of the Secondary Heart Field and TGFÎ ² -Mediated Outflow Tract Septation. Developmental Cell, 2010, 18, 480-485.	3.1	78
31	<i>Msx2</i> is an immediate downstream effector of <i>Pax3</i> in the development of the murine cardiac neural crest. Development (Cambridge), 2002, 129, 527-538.	1.2	78
32	A developmental transition in definitive erythropoiesis: erythropoietin expression is sequentially regulated by retinoic acid receptors and HNF4. Genes and Development, 2001, 15, 889-901.	2.7	72
33	Absence of TGFÎ ² signaling in embryonic vascular smooth muscle leads to reduced lysyl oxidase expression, impaired elastogenesis, and aneurysm. Genesis, 2009, 47, 115-121.	0.8	71
34	Compartment-Selective Sensitivity of Cardiovascular Morphogenesis to Combinations of Retinoic Acid Receptor Gene Mutations. Circulation Research, 1997, 80, 757-764.	2.0	71
35	The corrected structure of the SM50 spicule matrix protein of Strongylocentrotus purpuratus. Developmental Biology, 1991, 145, 201-202.	0.9	70
36	Peroxisome Proliferator-activated Receptor α-mediated Pathways Are Altered in Hepatocyte-specific Retinoid X Receptor α-deficient Mice. Journal of Biological Chemistry, 2000, 275, 28285-28290.	1.6	70

HENRY M SUCOV

#	Article	IF	CITATIONS
37	MOLECULAR INSIGHTS INTO CARDIAC DEVELOPMENT. Annual Review of Physiology, 1998, 60, 287-308.	5.6	67
38	Cardiomyocyte Polyploidy and Implications for Heart Regeneration. Annual Review of Physiology, 2020, 82, 45-61.	5.6	61
39	Convergent proliferative response and divergent morphogenic pathways induced by epicardial and endocardial signaling in fetal heart development. Mechanisms of Development, 2005, 122, 57-65.	1.7	53
40	Nkx2-5 regulates cardiac growth through modulation of Wnt signaling by R-spondin3. Development (Cambridge), 2014, 141, 2959-2971.	1.2	53
41	Extracardiac control of embryonic cardiomyocyte proliferation and ventricular wall expansion. Cardiovascular Research, 2015, 105, 271-278.	1.8	53
42	Epicardial Control of Myocardial Proliferation and Morphogenesis. Pediatric Cardiology, 2009, 30, 617-625.	0.6	52
43	Cranial neural crest-derived mesenchymal proliferation is regulated by msx1-mediated p19ink4d expression during odontogenesis. Developmental Biology, 2003, 261, 183-196.	0.9	47
44	PDGFâ€A as an epicardial mitogen during heart development. Developmental Dynamics, 2008, 237, 692-701.	0.8	47
45	Expression of the Epithelial Marker E-Cadherin by Thyroid C Cells and Their Precursors During Murine Development. Journal of Histochemistry and Cytochemistry, 2007, 55, 1075-1088.	1.3	42
46	PRMT1-p53 Pathway Controls Epicardial EMT and Invasion. Cell Reports, 2020, 31, 107739.	2.9	37
47	Mononuclear diploid cardiomyocytes support neonatal mouse heart regeneration in response to paracrine IGF2 signaling. ELife, 2020, 9, .	2.8	30
48	Retinoic acid, hypoxia, and GATA factors cooperatively control the onset of fetal liver erythropoietin expression and erythropoietic differentiation. Developmental Biology, 2005, 280, 59-72.	0.9	29
49	Mesodermal retinoic acid signaling regulates endothelial cell coalescence in caudal pharyngeal arch artery vasculogenesis. Developmental Biology, 2012, 361, 116-124.	0.9	29
50	Tnni3k alleles influence ventricular mononuclear diploid cardiomyocyte frequency. PLoS Genetics, 2019, 15, e1008354.	1.5	28
51	MEGF8 is a modifier of BMP signaling in trigeminal sensory neurons. ELife, 2013, 2, e01160.	2.8	27
52	Endothelial Neuropilin Disruption in Mice Causes DiGeorge Syndrome-Like Malformations via Mechanisms Distinct to Those Caused by Loss of Tbx1. PLoS ONE, 2012, 7, e32429.	1.1	23
53	Differential roles of insulin like growth factor 1 receptor and insulin receptor during embryonic heart development. BMC Developmental Biology, 2019, 19, 5.	2.1	22
54	Measuring cardiomyocyte cell-cycle activity and proliferation in the age of heart regeneration. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H579-H596.	1.5	21

Henry M Sucov

0

#	Article	IF	CITATIONS
55	A simplified genetic design for mammalian enamel. Biomaterials, 2011, 32, 3151-3157.	5.7	20
56	Phases and Mechanisms of Embryonic Cardiomyocyte Proliferation and Ventricular Wall Morphogenesis. Pediatric Cardiology, 2019, 40, 1359-1366.	0.6	15
57	Delta-like ligand-4 mediated Notch signaling controls proliferation of second heart field progenitor cells by regulating Fgf8 expression. Development (Cambridge), 2020, 147, .	1.2	14
58	Allelic variants between mouse substrains BALB/cJ and BALB/cByJ influence mononuclear cardiomyocyte composition and cardiomyocyte nuclear ploidy. Scientific Reports, 2020, 10, 7605.	1.6	11
59	Retinoids in Heart Development. , 1999, , 209-219.		9
60	Dysregulated endocardial TGFβ signaling and mesenchymal transformation result in heart outflow tract septation failure. Developmental Biology, 2016, 409, 272-276.	0.9	9
61	The prevalent I686T human variant and loss-of-function mutations in the cardiomyocyte-specific kinase gene TNNI3K cause adverse contractility and concentric remodeling in mice. Human Molecular Genetics, 2021, 29, 3504-3515.	1.4	9
62	Apical Resection and Cryoinjury of Neonatal Mouse Heart. Methods in Molecular Biology, 2021, 2158, 23-32.	0.4	2
63	Tracing Cell Lineage in Mammalian Cardiovascular Development. FASEB Journal, 2008, 22, 11.2.	0.2	Ο

64 Cardiomyocyte proliferation by calcineurin inhibition. , 2022, 1, 599-600.