Anita C Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4211472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiac pericyte reprogramming by MEK inhibition promotes arteriologenesis and angiogenesis of the ischemic heart. Journal of Clinical Investigation, 2022, 132, .	8.2	18
2	Mechanical Strain Induces Transcriptomic Reprogramming of Saphenous Vein Progenitors. Frontiers in Cardiovascular Medicine, 2022, 9, .	2.4	0
3	Activation of Bone Marrow Adaptive Immunity in Type 2 Diabetes: Rescue by Co-stimulation Modulator Abatacept. Frontiers in Immunology, 2021, 12, 609406.	4.8	9
4	Reconstruction of the Swine Pulmonary Artery Using a Graft Engineered With Syngeneic Cardiac Pericytes. Frontiers in Bioengineering and Biotechnology, 2021, 9, 715717.	4.1	5
5	Fabrication of New Hybrid Scaffolds for in vivo Perivascular Application to Treat Limb Ischemia. Frontiers in Cardiovascular Medicine, 2020, 7, 598890.	2.4	9
6	Transfer of a human gene variant associated with exceptional longevity improves cardiac function in obese type 2 diabetic mice through induction of the SDF â€1/ CXCR4 signalling pathway. European Journal of Heart Failure, 2020, 22, 1568-1581.	7.1	25
7	Multi-Omics Analysis of Diabetic Heart Disease in the db/db Model Reveals Potential Targets for Treatment by a Longevity-Associated Gene. Cells, 2020, 9, 1283.	4.1	11
8	Coronary artery mechanics induces human saphenous vein remodelling <i>via</i> recruitment of adventitial myofibroblast-like cells mediated by Thrombospondin-1. Theranostics, 2020, 10, 2597-2611.	10.0	23
9	In Vitro and In Vivo Preclinical Testing of Pericyteâ€Engineered Grafts for the Correction of Congenital Heart Defects. Journal of the American Heart Association, 2020, 9, e014214.	3.7	14
10	Galectin-3 Identifies a Subset of Macrophages With a Potential Beneficial Role in Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1491-1509.	2.4	49
11	Umbilical Cord Pericytes Provide a Viable Alternative to Mesenchymal Stem Cells for Neonatal Vascular Engineering. Frontiers in Cardiovascular Medicine, 2020, 7, 609980.	2.4	3
12	miR-15a/-16 Inhibit Angiogenesis by Targeting the Tie2 Coding Sequence: Therapeutic Potential of a miR-15a/16 Decoy System in Limb Ischemia. Molecular Therapy - Nucleic Acids, 2019, 17, 49-62.	5.1	34
13	Role of TPBG (Trophoblast Glycoprotein) Antigen in Human Pericyte Migratory and Angiogenic Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1113-1124.	2.4	15
14	Nerve growth factor gene therapy improves bone marrow sensory innervation and nociceptor-mediated stem cell release in a mouse model of type 1 diabetes with limb ischaemia. Diabetologia, 2019, 62, 1297-1311.	6.3	13
15	Layered double hydroxide nanoparticles: Impact on vascular cells, blood cells and the complement system. Journal of Colloid and Interface Science, 2018, 512, 404-410.	9.4	39
16	A humanized HLA-DR4 mouse model for autoimmune myocarditis. Journal of Molecular and Cellular Cardiology, 2017, 107, 22-26.	1.9	10
17	Strategies to Extend the Life of Saphenous Vein Grafts. , 2016, , 581-593.		0
18	Macrophage polarisation and MMP production are maintained in the absence of all lymphocytes or the TH1-lymphocyte subset. Atherosclerosis, 2016, 244, e2.	0.8	0

#	Article	IF	CITATIONS
19	Plaque Size Is Decreased but M1 Macrophage Polarization and Rupture Related Metalloproteinase Expression Are Maintained after Deleting T-Bet in ApoE Null Mice. PLoS ONE, 2016, 11, e0148873.	2.5	5
20	Targeting Therapies to Treat Vein Graft Disease and Restenosis. , 2016, , 715-723.		0
21	The pro-fibrotic and anti-inflammatory foam cell macrophage paradox. Genomics Data, 2015, 6, 136-138.	1.3	9
22	Foam Cell Formation In Vivo Converts Macrophages to a Pro-Fibrotic Phenotype. PLoS ONE, 2015, 10, e0128163.	2.5	65
23	Classical and Alternative Activation and Metalloproteinase Expression Occurs in Foam Cell Macrophages in Male and Female ApoE Null Mice in the Absence of T and B Lymphocytes. Frontiers in Immunology, 2014, 5, 537.	4.8	35
24	Nitric Oxide Synthase: Non-Canonical Expression Patterns. Frontiers in Immunology, 2014, 5, 478.	4.8	106
25	Macrophage: SHIP of Immunity. Frontiers in Immunology, 2014, 5, 620.	4.8	54
26	P731Classical and alternative activation and metalloproteinase expression occurs in foam cell macrophages in ApoE null mice in the absence of T- and B-lymphocytes. Cardiovascular Research, 2014, 103, S134.1-S134.	3.8	0
27	ââ,¬Å"Of Mice and Menââ,¬Â• Arginine Metabolism in Macrophages. Frontiers in Immunology, 2014, 5, 479.	4.8	141
28	171â€Deleting TH1-lymphocytes Influences Macrophage Activation and Metalloproteinase Expression in apoe Null Mice. Heart, 2014, 100, A97.2-A97.	2.9	0
29	P730Foam cell macrophages increase fibrosis: a new paradox. Cardiovascular Research, 2014, 103, S133.5-S133.	3.8	0
30	Inflammatory Response in Cardiovascular Surgery. , 2013, , .		2
31	Cytochrome P4502S1: a novel monocyte/macrophage fatty acid epoxygenase in human atherosclerotic plaques. Basic Research in Cardiology, 2013, 108, 319.	5.9	41
32	Metalloproteinases in Acute Venous Occlusion. , 2013, , 141-151.		1
33	Restenosis Treatments Using Nanoparticle-based Drug Delivery Systems. Current Pharmaceutical Design, 2013, 19, 6330-6339.	1.9	25
34	Targeted Treatments for Restenosis and Vein Graft Disease. ISRN Vascular Medicine, 2012, 2012, 1-23.	0.7	2
35	Animal models for studying vein graft failure and therapeutic interventions. Current Opinion in Pharmacology, 2012, 12, 121-126.	3.5	19
36	Antibodyâ€Targeted Drug Delivery to Injured Arteries Using Layered Double Hydroxide Nanoparticles. Advanced Healthcare Materials, 2012, 1, 669-673.	7.6	43

#	Article	IF	CITATIONS
37	Cellular trafficking of low molecular weight heparin incorporated in layered double hydroxide nanoparticles in rat vascular smooth muscle cells. Biomaterials, 2011, 32, 7234-7240.	11.4	62
38	Neointima Formed by Arterial Smooth Muscle Cells Expressing Versican Variant V3 Is Resistant to Lipid and Macrophage Accumulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1309-1316.	2.4	43
39	Complement C5a inhibition reduces atherosclerosis in ApoE ^{–/–} mice. FASEB Journal, 2011, 25, 2447-2455.	0.5	76
40	Animal Models for Studying Neointima Formation. Current Vascular Pharmacology, 2010, 8, 198-219.	1.7	19
41	Enhanced effects of low molecular weight heparin intercalated with layered double hydroxide nanoparticles on rat vascular smooth muscle cells. Biomaterials, 2010, 31, 5455-5462.	11.4	69
42	BAS/BSCR8 Does macrophage foam cell formation promote extracellular matrix formation or degradation? A genomic study. Heart, 2010, 96, e14-e14.	2.9	0
43	Effect of Matrix Metalloproteinase-9 Knockout on Vein Graft Remodelling in Mice. Journal of Vascular Research, 2010, 47, 299-308.	1.4	29
44	P411 GENOMIC DIFFERENCES BETWEEN MOUSE FOAMY AND NON-FOAMY MACROPHAGES. Atherosclerosis Supplements, 2010, 11, 103-104.	1.2	0
45	Reduction of early vein graft thrombosis by tissue plasminogen activator gene transfer. Thrombosis and Haemostasis, 2009, 102, 145-152.	3.4	17
46	Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thrombosis and Haemostasis, 2009, 101, 1006-1011.	3.4	143
47	Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thrombosis and Haemostasis, 2009, 101, 1006-11.	3.4	53
48	<i>In Vitro</i> Sustained Release of LMWH from MgAl-layered Double Hydroxide Nanohybrids. Chemistry of Materials, 2008, 20, 3715-3722.	6.7	247
49	Protective effects of C5a receptor antagonism in a mouse model of atherosclerosis. Molecular Immunology, 2008, 45, 4151.	2.2	0
50	Genomics of Foam Cells and Nonfoamy Macrophages From Rabbits Identifies Arginase-I as a Differential Regulator of Nitric Oxide Production. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 571-577.	2.4	62
51	S18886, a selective TP receptor antagonist, inhibits development of atherosclerosis in rabbits. Atherosclerosis, 2005, 183, 65-73.	0.8	63
52	W12-P-075 What makes a macrophage a foam cell? Answers from genomics. Atherosclerosis Supplements, 2005, 6, 80.	1.2	0
53	Conjugation of an antibody to cross-linked fibrin for targeted delivery of anti-restenotic drugs. Journal of Controlled Release, 2004, 100, 357-377.	9.9	16
54	Dog peritoneal and pleural cavities as bioreactors to grow autologous vascular grafts. Journal of Vascular Surgery, 2004, 39, 859-867.	1.1	117

#	Article	IF	CITATIONS
55	Targeted delivery of heparin and LMWH using a fibrin antibody prevents restenosis. Atherosclerosis, 2004, 176, 73-81.	0.8	20
56	A casein variant in cow's milk is atherogenic. Atherosclerosis, 2003, 170, 13-19.	0.8	98
57	Timecourse of fibrin deposition and removal after arterial injury. Thrombosis Research, 2003, 109, 65-69.	1.7	11
58	Advances in vascular tissue engineering. Cardiovascular Pathology, 2003, 12, 271-276.	1.6	123
59	Leukaemia inhibitory factor retards the progression of atherosclerosis. Cardiovascular Research, 2003, 58, 222-230.	3.8	22
60	Smooth muscle cells of injured rat and rabbit arteries in culture: contractile and cytoskeletal proteins. Atherosclerosis, 2001, 154, 291-299.	0.8	6
61	Contractile and cytoskeletal proteins of smooth muscle cells in rat, rabbit and human arteries. Tissue and Cell, 2000, 32, 249-256.	2.2	6
62	Resistance of ovine, caprine and bovine endothelial cells to Clostridium perfringens type D epsilon toxin in vitro. Veterinary Research Communications, 1999, 23, 275-284.	1.6	17
63	Matrix metalloproteinases can facilitate the heparanase-induced promotion of phenotypic change in vascular smooth muscle cells. Atherosclerosis, 1999, 145, 97-106.	0.8	41
64	A REPRODUCIBLE MODEL OF CHRONIC REJECTION IN RAT RENAL ALLOGRAFTS. ANZ Journal of Surgery, 1995, 65, 114-119.	0.7	13
65	Expression of growth factor receptors on arterial smooth muscle cells. Dependency on cell phenotype and serum factors. Atherosclerosis, 1995, 118, 77-87.	0.8	45
66	Hemodynamic and pharmacokinetic interaction between oral verapamil and metoprolol: Evidence of altered presystemic extraction. Journal of the American College of Cardiology, 1991, 17, A139.	2.8	0
67	LIVER PRESERVATION WITH UW SOLUTION. Transplantation, 1990, 49, 869-871.	1.0	51
68	EVALUATION OF UW SOLUTION IN RAT KIDNEY PRESERVATION. Transplantation, 1990, 49, 1051-1054.	1.0	35
69	EVALUATION OF UW SOLUTION IN A RAT KIDNEY PRESERVATION MODEL. Transplantation, 1990, 49, 872-875.	1.0	35