Yang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4211342/publications.pdf Version: 2024-02-01

YANG WANG

#	Article	IF	CITATIONS
1	DABCO as a practical catalyst for aromatic halogenation with <i>N</i> -halosuccinimides. RSC Advances, 2022, 12, 7115-7119.	3.6	10
2	Construction of Benzimidazolone Derivatives via Aryl Iodide Catalyzed Intramolecular Oxidative C–H Amination. Journal of Organic Chemistry, 2022, 87, 3234-3241.	3.2	3
3	Recent Application of Chiral Aryliodine Based on the 2-lodoÂresorcinol Core in Asymmetric Catalysis. Synthesis, 2021, 53, 889-903.	2.3	18
4	Design of pyridinylphosphinate-based blue iridium phosphors for high-efficiency organic light-emitting diodes. Dalton Transactions, 2021, 50, 3887-3893.	3.3	7
5	DDQ dehydrogenative Diels–Alder reaction for the synthesis of functionalized spiro[carbazole-1,3′-indolines] and spiro[carbazole-1,5′-pyrimidines]. New Journal of Chemistry, 2021, 45, 15423-15428.	2.8	6
6	Diastereoselective Synthesis of Tetrahydrospiro[carbazole-1,3â€2-indolines] via an InBr ₃ -Catalyzed Domino Diels–Alder Reaction. Journal of Organic Chemistry, 2021, 86, 5616-5629.	3.2	30
7	An Efficient Approach for 3,3-Disubstituted Oxindoles Synthesis: Aryl Iodine Catalyzed Intramolecular C–N Bond Oxidative Cross-Coupling. Organic Letters, 2021, 23, 8750-8754.	4.6	12
8	Construction and Properties of Octahydrobinaphthol-based Chiral Luminescent Materials with Large Steric Hindrance. Acta Chimica Sinica, 2021, 79, 1401.	1.4	13
9	Oxidative Annulation of Diphenylpropanamides via In Situ Hypervalent Iodine-Promoted Intramolecular C–N/C–O Bond Formation. SynOpen, 2021, 05, 327-334.	1.7	3
10	Palladium-catalyzed domino Heck cyclization/ring opening of sulfolenes/desulfitative coupling: regio- and stereoselective synthesis of alkylated conjugated dienes. Organic Chemistry Frontiers, 2020, 7, 2731-2736.	4.5	19
11	Enantioselective Intramolecular Dearomative Lactonization of Naphthols Catalyzed by Planar Chiral Iodoarene. Synthesis, 2019, 51, 3675-3682.	2.3	7
12	Development of Planar Chiral Iodoarenes Based on [2.2]Paracyclophane and Their Application in Catalytic Enantioselective Fluorination of β-Ketoesters. Organic Letters, 2018, 20, 2555-2558.	4.6	52
13	Diastereo- and enantioselective construction of biologically important pyrrolo[1,2-a]indole scaffolds via catalytic asymmetric [3 + 2] cyclodimerizations of 3-alkyl-2-vinylindoles. Organic Chemistry Frontiers, 2017, 4, 57-68.	4.5	28
14	BrÃ,nsted Acidâ€Catalyzed [3+2] Cyclodimerization of 3â€Alkyl―2â€vinylindoles Leading to the Diastereoselective Construction of a Pyrroloindole Framework. Advanced Synthesis and Catalysis, 2016, 358, 1093-1102.	4.3	15
15	Enantioselective Construction of the Biologically Important Cyclopenta[1,4]diazepine Framework Enabled by Asymmetric Catalysis by Chiral Spiroâ€Phosphoric Acid. European Journal of Organic Chemistry, 2015, 2015, 7926-7934.	2.4	10
16	Catalytic Enantioselective Arylative Dearomatization of 3â€Methylâ€2â€vinylindoles Enabled by Reactivity Switch. Advanced Synthesis and Catalysis, 2015, 357, 4031-4040.	4.3	34
17	BrÃ,nsted Acid Catalyzed Asymmetric Diels–Alder Reactions: Stereoselective Construction of Spiro[tetrahydrocarbazole-3,3′-oxindole] Framework. Journal of Organic Chemistry, 2015, 80, 3223-3232.	3.2	97
18	Enantioselective Construction of the Biologically Significant Dibenzo[1,4]diazepine Scaffold <i>via</i> Organocatalytic Asymmetric Three omponent Reactions. Advanced Synthesis and Catalysis, 2014, 356, 2009-2019.	4.3	37

#	Article	IF	CITATIONS
19	Catalytic Asymmetric Construction of 3,3′â€\$pirooxindoles Fused with Sevenâ€Membered Rings by Enantioselective Tandem Reactions. Chemistry - A European Journal, 2014, 20, 15047-15052.	3.3	45