List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/42113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	U(rano)topia: spectral skies and rainbow holograms for silica aerogel artworks. Journal of Sol-Gel Science and Technology, 2023, 106, 319-330.	1.1	4
2	Silicious trichomes as a trait that may slow down leaf decomposition by soil meso- and macrofauna. Plant and Soil, 2022, 471, 289-299.	1.8	8
3	Highly Dispersed Pt Clusters on F-Doped Tin(IV) Oxide Aerogel Matrix: An Ultra-Robust Hybrid Catalyst for Enhanced Hydrogen Evolution. ACS Nano, 2022, 16, 1625-1638.	7.3	48
4	Sol–gel based structural designs of macropores and material shapes of metal–organic framework gels. Materials Advances, 2021, 2, 4235-4239.	2.6	1
5	Tunable and Well-Defined Bimodal Porous Model Electrodes for Revealing Multiscale Structural Effects in the Nonaqueous Li–O ₂ Electrode Process. Journal of Physical Chemistry C, 2021, 125, 1403-1413.	1.5	6
6	Mechanically Strong, Scalable, Mesoporous Xerogels of Nanocellulose Featuring Light Permeability, Thermal Insulation, and Flame Self-Extinction. ACS Nano, 2021, 15, 1436-1444.	7.3	59
7	Highly porous melamine-formaldehyde monoliths with controlled hierarchical porosity toward application as a metal scavenger. Materials Advances, 2021, 2, 2604-2608.	2.6	2
8	Preparation of hierarchically porous spinel CoMn 2 O 4 monoliths via sol–gel process accompanied by phase separation. Journal of the American Ceramic Society, 2021, 104, 2449-2459.	1.9	5
9	Multiscale structural control of linked metal–organic polyhedra gel by aging-induced linkage-reorganization. Chemical Science, 2021, 12, 12556-12563.	3.7	24
10	Designing hierarchical porosity in tin oxide monoliths and their application as a solid acid catalyst. New Journal of Chemistry, 2021, 45, 17558-17565.	1.4	0
11	Colorless Transparent Melamine–Formaldehyde Aerogels for Thermal Insulation. ACS Applied Nano Materials, 2020, 3, 49-54.	2.4	26
12	Synthesis of a Crystalline and Transparent Aerogel Composed of Ni–Al Layered Double Hydroxide Nanoparticles through Crystallization from Amorphous Hydrogel. Langmuir, 2020, 36, 9436-9442.	1.6	7
13	On-site formation of small Ag nanoparticles on superhydrophobic mesoporous silica for antibacterial application. New Journal of Chemistry, 2020, 44, 13553-13556.	1.4	5
14	Hierarchically porous monoliths prepared via sol–gel process accompanied by spinodal decomposition. Journal of Sol-Gel Science and Technology, 2020, 95, 530-550.	1.1	40
15	Hierarchically porous monoliths based on low-valence transition metal (Cu, Co, Mn) oxides: gelation and phase separation. National Science Review, 2020, 7, 1656-1666.	4.6	11
16	Superhydrophobic highly flexible doubly cross-linked aerogel/carbon nanotube composites as strain/pressure sensors. Journal of Materials Chemistry B, 2020, 8, 4883-4889.	2.9	25
17	Formulation of Metal–Organic Framework Inks for the 3D Printing of Robust Microporous Solids toward High-Pressure Gas Storage and Separation. ACS Applied Materials & Interfaces, 2020, 12, 10983-10992.	4.0	95
18	Superelastic Triple-Network Polyorganosiloxane-Based Aerogels as Transparent Thermal Superinsulators and Efficient Separators. Chemistry of Materials, 2020, 32, 1595-1604.	3.2	57

#	Article	IF	CITATIONS
19	Synthesis of hierarchically porous MgO monoliths with continuous structure via sol–gel process accompanied by phase separation. Journal of Sol-Gel Science and Technology, 2019, 89, 29-36.	1.1	12
20	Resilient, fire-retardant and mechanically strong polyimide-polyvinylpolymethylsiloxane composite aerogel prepared via stepwise chemical liquid deposition. Materials and Design, 2019, 183, 108096.	3.3	38
21	Ambient-dried highly flexible copolymer aerogels and their nanocomposites with polypyrrole for thermal insulation, separation, and pressure sensing. Polymer Chemistry, 2019, 10, 4980-4990.	1.9	21
22	Superhydrophobic Ultraflexible Triple-Network Graphene/Polyorganosiloxane Aerogels for a High-Performance Multifunctional Temperature/Strain/Pressure Sensing Array. Chemistry of Materials, 2019, 31, 6276-6285.	3.2	82
23	Selfâ€Assembly of Metal–Organic Frameworks into Monolithic Materials with Highly Controlled Trimodal Pore Structures. Angewandte Chemie, 2019, 131, 19223-19229.	1.6	11
24	Superelastic Multifunctional Aminosilane-Crosslinked Graphene Aerogels for High Thermal Insulation, Three-Component Separation, and Strain/Pressure-Sensing Arrays. ACS Applied Materials & Interfaces, 2019, 11, 43533-43542.	4.0	55
25	Selfâ€Assembly of Metal–Organic Frameworks into Monolithic Materials with Highly Controlled Trimodal Pore Structures. Angewandte Chemie - International Edition, 2019, 58, 19047-19053.	7.2	37
26	Thermogravimetric Evolved Gas Analysis and Microscopic Elemental Mapping of the Solid Electrolyte Interphase on Silicon Incorporated in Free-Standing Porous Carbon Electrodes. Langmuir, 2019, 35, 12680-12688.	1.6	7
27	Preparation of surface-coated macroporous silica (core-shell silica monolith) for HPLC separations. Journal of Sol-Gel Science and Technology, 2019, 90, 105-112.	1.1	4
28	Nanocellulose Xerogels With High Porosities and Large Specific Surface Areas. Frontiers in Chemistry, 2019, 7, 316.	1.8	45
29	Preparation of zinc oxide with a three-dimensionally interconnected macroporous structure via a sol–gel method accompanied by phase separation. New Journal of Chemistry, 2019, 43, 11720-11726.	1.4	12
30	Macroporous Niobium Phosphate-Supported Magnesia Catalysts for Isomerization of Glucose-to-Fructose. ACS Sustainable Chemistry and Engineering, 2019, 7, 8512-8521.	3.2	33
31	Hybrid silicone aerogels toward unusual flexibility, functionality, and extended applications. Journal of Sol-Gel Science and Technology, 2019, 89, 166-175.	1.1	16
32	Comprehensive studies on phosphoric acid treatment of porous titania toward titanium phosphate and pyrophosphate monoliths with pore hierarchy and a nanostructured pore surface. Inorganic Chemistry Frontiers, 2018, 5, 1397-1404.	3.0	7
33	Iron(<scp>iii</scp>) oxyhydroxide and oxide monoliths with controlled multiscale porosity: synthesis and their adsorption performance. Journal of Materials Chemistry A, 2018, 6, 9041-9048.	5.2	16
34	Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying. ACS Nano, 2018, 12, 521-532.	7.3	211
35	Versatile Double-Cross-Linking Approach to Transparent, Machinable, Supercompressible, Highly Bendable Aerogel Thermal Superinsulators. Chemistry of Materials, 2018, 30, 2759-2770.	3.2	130
36	Aerogel Photocatalyst Composed of Transparent Mesoporous Polymethylsilsesquioxane Softly Postâ€Modified with a Visibleâ€Lightâ€Absorbing Metal Complex. ChemNanoMat, 2018, 4, 52-55.	1.5	6

#	Article	IF	CITATIONS
37	Superflexible Multifunctional Polyvinylpolydimethylsiloxaneâ€Based Aerogels as Efficient Absorbents, Thermal Superinsulators, and Strain Sensors. Angewandte Chemie, 2018, 130, 9870-9875.	1.6	16
38	Superflexible Multifunctional Polyvinylpolydimethylsiloxaneâ€Based Aerogels as Efficient Absorbents, Thermal Superinsulators, and Strain Sensors. Angewandte Chemie - International Edition, 2018, 57, 9722-9727.	7.2	108
39	Hybrid Aerogels. , 2018, , 3317-3338.		1
40	Sol–gel preparation of hierarchically porous magnesium aluminate (MgAl2O4) spinel monoliths for dye adsorption. Journal of Sol-Gel Science and Technology, 2018, 88, 114-128.	1.1	12
41	Synthesis of a hierarchically porous niobium phosphate monolith by a sol–gel method for fructose dehydration to 5-hydroxymethylfurfural. Catalysis Science and Technology, 2018, 8, 3675-3685.	2.1	28
42	Low-density, transparent aerogels and xerogels based on hexylene-bridged polysilsesquioxane with bendability. Journal of Sol-Gel Science and Technology, 2017, 81, 42-51.	1.1	32
43	Siliconeâ€Based Organic–Inorganic Hybrid Aerogels and Xerogels. Chemistry - A European Journal, 2017, 23, 5176-5187.	1.7	91
44	Highly Flexible Hybrid Polymer Aerogels and Xerogels Based on Resorcinol-Formaldehyde with Enhanced Elastic Stiffness and Recoverability: Insights into the Origin of Their Mechanical Properties. Chemistry of Materials, 2017, 29, 2122-2134.	3.2	76
45	Functionalization of hierarchically porous silica monoliths with polyethyleneimine (PEI) for CO 2 adsorption. Microporous and Mesoporous Materials, 2017, 245, 51-57.	2.2	78
46	Transparent polyvinylsilsesquioxane aerogels: investigations on synthetic parameters and surface modification. Journal of Sol-Gel Science and Technology, 2017, 82, 2-14.	1.1	8
47	Frontispiece: Siliconeâ€Based Organic–Inorganic Hybrid Aerogels and Xerogels. Chemistry - A European Journal, 2017, 23, .	1.7	2
48	Transparent Ethenylene-Bridged Polymethylsiloxane Aerogels: Mechanical Flexibility and Strength and Availability for Addition Reaction. Langmuir, 2017, 33, 4543-4550.	1.6	43
49	Fabrication of hydrophobic polymethylsilsesquioxane aerogels by a surfactant-free method using alkoxysilane with ionic group. Journal of Asian Ceramic Societies, 2017, 5, 104-108.	1.0	10
50	Amine/Hydrido Bifunctional Nanoporous Silica with Small Metal Nanoparticles Made Onsite: Efficient Dehydrogenation Catalyst. ACS Applied Materials & Interfaces, 2017, 9, 36-41.	4.0	13
51	Grafted Polymethylhydrosiloxane on Hierarchically Porous Silica Monoliths: A New Path to Monolith-Supported Palladium Nanoparticles for Continuous Flow Catalysis Applications. ACS Applied Materials & Interfaces, 2017, 9, 406-412.	4.0	46
52	Aerogels from Chloromethyltrimethoxysilane and Their Functionalizations. Langmuir, 2017, 33, 13841-13848.	1.6	4
53	Synthesis and characterization of monolithic ZnAl2O4 spinel with well-defined hierarchical pore structures via a sol-gel route. Journal of Alloys and Compounds, 2017, 727, 763-770.	2.8	15
54	Nanostructured titanium phosphates prepared via hydrothermal reaction and their electrochemical Li- and Na-ion intercalation properties. CrystEngComm, 2017, 19, 4551-4560.	1.3	13

#	Article	IF	CITATIONS
55	Synthesis, Reduction, and Electrical Properties of Macroporous Monolithic Mayenite Electrides with High Porosity. ACS Omega, 2017, 2, 8148-8155.	1.6	7
56	Highly Efficient Encapsulation of Ingredients in Poly(methyl methacrylate) Capsules Using a Superoleophobic Material. Polymers and Polymer Composites, 2017, 25, 129-134.	1.0	6
57	Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes. Journal of Power Sources, 2016, 318, 41-48.	4.0	67
58	Boehmite Nanofiber–Polymethylsilsesquioxane Core–Shell Porous Monoliths for a Thermal Insulator under Low Vacuum Conditions. Chemistry of Materials, 2016, 28, 3237-3240.	3.2	25
59	Hierarchically Porous Carbon Monoliths Comprising Ordered Mesoporous Nanorod Assemblies for High-Voltage Aqueous Supercapacitors. Chemistry of Materials, 2016, 28, 3944-3950.	3.2	203
60	Transparent, Highly Insulating Polyethyl- and Polyvinylsilsesquioxane Aerogels: Mechanical Improvements by Vulcanization for Ambient Pressure Drying. Chemistry of Materials, 2016, 28, 6860-6868.	3.2	96
61	Transparent Ethylene-Bridged Polymethylsiloxane Aerogels and Xerogels with Improved Bending Flexibility. Langmuir, 2016, 32, 13427-13434.	1.6	49
62	Monolithic acidic catalysts for the dehydration of xylose into furfural. Catalysis Communications, 2016, 87, 112-115.	1.6	27
63	Metal zirconium phosphate macroporous monoliths: Versatile synthesis, thermal expansion and mechanical properties. Microporous and Mesoporous Materials, 2016, 225, 122-127.	2.2	13
64	Dynamic spring-back behavior in evaporative drying of polymethylsilsesquioxane monolithic gels for low-density transparent thermal superinsulators. Journal of Non-Crystalline Solids, 2016, 434, 115-119.	1.5	41
65	Hierarchically porous titanium phosphate monoliths and their crystallization behavior in ethylene glycol. New Journal of Chemistry, 2016, 40, 4153-4159.	1.4	11
66	Facile preparation of well-defined macroporous yttria-stabilized zirconia monoliths via sol–gel process accompanied by phase separation. Journal of Porous Materials, 2016, 23, 867-875.	1.3	9
67	Encapsulation of hydrophobic ingredients in hard resin capsules with ultrahigh efficiency using a superoleophobic material. Polymer Bulletin, 2016, 73, 409-417.	1.7	6
68	Hybrid Aerogels. , 2016, , 1-22.		2
69	Synthesis of hierarchically porous polymethylsilsesquioxane monoliths with controlled mesopores for HPLC separation. Journal of the Ceramic Society of Japan, 2015, 123, 770-778.	0.5	13
70	Novel soft touch silicone beads from methyltrimethoxysilane and dimethyldimethoxysilane using easy aqueous solution reaction. Journal of the Ceramic Society of Japan, 2015, 123, 714-718.	0.5	5
71	High-performance liquid chromatography separation of unsaturated organic compounds by a monolithic silica column embedded with silver nanoparticles. Journal of Separation Science, 2015, 38, 2841-2847.	1.3	12
72	Hard Carbon Anodes for Naâ€Ion Batteries: Toward a Practical Use. ChemElectroChem, 2015, 2, 1917-1920.	1.7	112

#	Article	IF	CITATIONS
73	Direct preparation and conversion of copper hydroxide-based monolithic xerogels with hierarchical pores. New Journal of Chemistry, 2015, 39, 6771-6777.	1.4	23
74	Effect of Calcination Conditions on Porous Reduced Titanium Oxides and Oxynitrides via a Preceramic Polymer Route. Inorganic Chemistry, 2015, 54, 2802-2808.	1.9	14
75	Synthesis of robust hierarchically porous zirconium phosphate monolith for efficient ion adsorption. New Journal of Chemistry, 2015, 39, 2444-2450.	1.4	48
76	Mechanically stable, hierarchically porous Cu ₃ (btc) ₂ (HKUST-1) monoliths via direct conversion of copper(<scp>ii</scp>) hydroxide-based monoliths. Chemical Communications, 2015, 51, 3511-3514.	2.2	67
77	Sol–gel synthesis of nanocrystal-constructed hierarchically porous TiO ₂ based composites for lithium ion batteries. RSC Advances, 2015, 5, 24803-24813.	1.7	22
78	Mesoscopic superstructures of flexible porous coordination polymers synthesized <i>via</i> coordination replication. Chemical Science, 2015, 6, 5938-5946.	3.7	39
79	High-Level Doping of Nitrogen, Phosphorus, and Sulfur into Activated Carbon Monoliths and Their Electrochemical Capacitances. Chemistry of Materials, 2015, 27, 4703-4712.	3.2	237
80	Preparation of silver nanoparticles embedded hierarchically porous AlPO ₄ monoliths. New Journal of Chemistry, 2015, 39, 6238-6243.	1.4	6
81	Spontaneous preparation of hierarchically porous silica monoliths with uniform spherical mesopores confined in a well-defined macroporous framework. Dalton Transactions, 2015, 44, 13592-13601.	1.6	28
82	Preparation of macroporous zirconia monoliths from ionic precursors via an epoxide-mediated sol-gel process accompanied by phase separation. Science and Technology of Advanced Materials, 2015, 16, 025003.	2.8	17
83	Ultralow-Density, Transparent, Superamphiphobic Boehmite Nanofiber Aerogels and Their Alumina Derivatives. Chemistry of Materials, 2015, 27, 3-5.	3.2	67
84	Impact of Electrolyte on Pseudocapacitance and Stability of Porous Titanium Nitride (TiN) Monolithic Electrode. Journal of the Electrochemical Society, 2015, 162, A77-A85.	1.3	55
85	Hierarchically Porous Li ₄ Ti ₅ O ₁₂ Anode Materials for Li―and Naâ€ŀon Batteries: Effects of Nanoarchitectural Design and Temperature Dependence of the Rate Capability. Advanced Energy Materials, 2015, 5, 1400730.	10.2	124
86	Monolithic silsesquioxane materials with well-defined pore structure. Journal of Materials Research, 2014, 29, 2773-2786.	1.2	27
87	Facile preparation of silver nanoparticles homogeneously immobilized in hierarchically monolithic silica using ethylene glycol as reductant. Dalton Transactions, 2014, 43, 12648.	1.6	34
88	Reduction on reactive pore surfaces as a versatile approach to synthesize monolith-supported metal alloy nanoparticles and their catalytic applications. Journal of Materials Chemistry A, 2014, 2, 12535.	5.2	30
89	Porous chromium-based ceramic monoliths: oxides (Cr ₂ O ₃), nitrides (CrN), and carbides (Cr ₃ C ₂). Journal of Materials Chemistry A, 2014, 2, 745-752.	5.2	32
90	The thermal conductivity of polymethylsilsesquioxane aerogels and xerogels with varied pore sizes for practical application as thermal superinsulators. Journal of Materials Chemistry A, 2014, 2, 6525-6531.	5.2	176

#	Article	IF	CITATIONS
91	A new hierarchically porous Pd@HSQ monolithic catalyst for Mizoroki–Heck cross-coupling reactions. New Journal of Chemistry, 2014, 38, 1144-1149.	1.4	19
92	Synthesis and electrochemical performance of hierarchically porous N-doped TiO2 for Li-ion batteries. New Journal of Chemistry, 2014, 38, 1380.	1.4	28
93	Surface Functionalization of Silica by Si–H Activation of Hydrosilanes. Journal of the American Chemical Society, 2014, 136, 11570-11573.	6.6	68
94	Facile synthesis of monolithic mayenite with well-defined macropores via an epoxide-mediated sol–gel process accompanied by phase separation. New Journal of Chemistry, 2014, 38, 5832-5839.	1.4	21
95	Preparation of macroporous cordierite monoliths via the sol–gel process accompanied by phase separation. Journal of the European Ceramic Society, 2014, 34, 817-823.	2.8	46
96	Polymethylsilsesquioxane–Cellulose Nanofiber Biocomposite Aerogels with High Thermal Insulation, Bendability, and Superhydrophobicity. ACS Applied Materials & Interfaces, 2014, 6, 9466-9471.	4.0	164
97	Liquid-phase synthesis and application of monolithic porous materials based on organic–inorganic hybrid methylsiloxanes, crosslinked polymers and carbons. Journal of Sol-Gel Science and Technology, 2013, 65, 12-22.	1.1	11
98	Pore structure control of macroporous methylsilsesquioxane monoliths prepared by in situ two-step processing. Journal of Porous Materials, 2013, 20, 1477-1483.	1.3	13
99	Gelation behavior and phase separation of macroporous methylsilsesquioxane monoliths prepared by in situ two-step processing. Journal of Sol-Gel Science and Technology, 2013, 67, 406-413.	1.1	11
100	Sol–gel synthesis of macroporous TiO2 from ionic precursors via phase separation route. Journal of Sol-Gel Science and Technology, 2013, 67, 639-645.	1.1	17
101	Hierarchically Porous Monoliths Based on N-Doped Reduced Titanium Oxides and Their Electric and Electric Electric Electric and Electrochemical Properties. Chemistry of Materials, 2013, 25, 3504-3512.	3.2	52
102	Preparation of a hierarchically porous AlPO ₄ monolith via an epoxide-mediated sol–gel process accompanied by phase separation. Science and Technology of Advanced Materials, 2013, 14, 045007.	2.8	18
103	A Superamphiphobic Macroporous Silicone Monolith with Marshmallowâ€like Flexibility. Angewandte Chemie - International Edition, 2013, 52, 10788-10791.	7.2	122
104	Synthesis of Silver Nanoparticles Confined in Hierarchically Porous Monolithic Silica: A New Function in Aromatic Hydrocarbon Separations. ACS Applied Materials & Interfaces, 2013, 5, 2118-2125.	4.0	41
105	New Li2FeSiO4–carbon monoliths with controlled macropores: effects of pore properties on electrode performance. Physical Chemistry Chemical Physics, 2013, 15, 8736.	1.3	17
106	Sol–gel synthesis of zinc ferrite-based xerogel monoliths with well-defined macropores. RSC Advances, 2013, 3, 3661.	1.7	18
107	Facile Synthesis of Marshmallowâ€like Macroporous Gels Usable under Harsh Conditions for the Separation of Oil and Water. Angewandte Chemie - International Edition, 2013, 52, 1986-1989.	7.2	408
108	Hierarchically porous nickel/carbon composite monoliths prepared by sol–gel method from an ionic precursor. Microporous and Mesoporous Materials, 2013, 176, 64-70.	2.2	32

#	Article	IF	CITATIONS
109	Preparation of mullite monoliths with well-defined macropores and mesostructured skeletons via the sol–gel process accompanied by phase separation. Journal of the European Ceramic Society, 2013, 33, 1967-1974.	2.8	52
110	Hierarchically porous monoliths of oxygen-deficient anatase TiO2â^'x with electronic conductivity. RSC Advances, 2013, 3, 7205.	1.7	15
111	Recyclable Functionalization of Silica with Alcohols via Dehydrogenative Addition on Hydrogen Silsesquioxane. Langmuir, 2013, 29, 12243-12253.	1.6	10
112	Synthesis of Hierarchically Porous Hydrogen Silsesquioxane Monoliths and Embedding of Metal Nanoparticles by On‧ite Reduction. Advanced Functional Materials, 2013, 23, 2714-2722.	7.8	47
113	Macroporous SiO ₂ Monoliths Prepared via Sol-Gel Process Accompanied by Phase Separation. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2013, 29, 646-652.	2.2	8
114	Recent Progress in Aerogel Science and Technology. Advanced Porous Materials, 2013, 1, 147-163.	0.3	8
115	Ultrasound propagation in dense aerogels filled with liquid ⁴ He. Journal of Physics: Conference Series, 2012, 400, 012045.	0.3	0
116	Advances in monolithic porous materials tailored in liquid media: around inorganic oxides and organic polymers. Journal of the Ceramic Society of Japan, 2012, 120, 1-10.	0.5	6
117	New Insights into the Relationship between Micropore Properties, Ionic Sizes, and Electric Double-Layer Capacitance in Monolithic Carbon Electrodes. Journal of Physical Chemistry C, 2012, 116, 26197-26203.	1.5	45
118	New Monolithic Capillary Columns with Well-Defined Macropores Based on Poly(styrene-co-divinylbenzene). ACS Applied Materials & Interfaces, 2012, 4, 2343-2347.	4.0	38
119	Role of block copolymer surfactant on the pore formation in methylsilsesquioxane aerogel systems. RSC Advances, 2012, 2, 7166.	1.7	43
120	Synthesis of Monolithic Hierarchically Porous Iron-Based Xerogels from Iron(III) Salts via an Epoxide-Mediated Sol–Gel Process. Chemistry of Materials, 2012, 24, 2071-2077.	3.2	78
121	Selective Preparation of Macroporous Monoliths of Conductive Titanium Oxides Ti _{<i>n</i>} O _{2<i>n</i>–1} (<i>n</i> = 2, 3, 4, 6). Journal of the American Chemical Society, 2012, 134, 10894-10898.	6.6	106
122	Development of Flexible Porous Materials from Organotrialkoxysilanes. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2012, 59, 320-325.	0.1	0
123	Evolution of Mesopores in Monolithic Macroporous Ethylene-Bridged Polysilsesquioxane Gels Incorporated with Nonionic Surfactant. International Journal of Polymer Science, 2012, 2012, 1-6.	1.2	7
124	Flower-like surface modification of titania materials by lithium hydroxide solution. Journal of Colloid and Interface Science, 2012, 374, 291-296.	5.0	12
125	Facile preparation of macroporous graphitized carbon monoliths from iron-containing resorcinol–formaldehyde gels. Materials Letters, 2012, 76, 1-4.	1.3	33
126	Pore properties of hierarchically porous carbon monoliths with high surface area obtained from bridged polysilsesquioxanes. Microporous and Mesoporous Materials, 2012, 155, 265-273.	2.2	19

#	Article	IF	CITATIONS
127	Structure and properties of polymethylsilsesquioxane aerogels synthesized with surfactant n-hexadecyltrimethylammonium chloride. Microporous and Mesoporous Materials, 2012, 158, 247-252.	2.2	53
128	Monolithic electrode for electric double-layer capacitors based on macro/meso/microporous S-Containing activated carbon with high surface area. Journal of Materials Chemistry, 2011, 21, 2060.	6.7	151
129	Hierarchically Porous Carbon Monoliths with High Surface Area from Bridged Poly(silsesquioxane) without Thermal Activation Process. IOP Conference Series: Materials Science and Engineering, 2011, 18, 032005.	0.3	0
130	Facile Preparation of Monolithic LiFePO ₄ /Carbon Composites with Well-Defined Macropores for a Lithium-Ion Battery. Chemistry of Materials, 2011, 23, 5208-5216.	3.2	82
131	Synthesis of New Flexible Aerogels from MTMS/DMDMS via Ambient Pressure Drying. IOP Conference Series: Materials Science and Engineering, 2011, 18, 032013.	0.3	11
132	New flexible aerogels and xerogels derived from methyltrimethoxysilane/dimethyldimethoxysilane co-precursors. Journal of Materials Chemistry, 2011, 21, 17077.	6.7	122
133	(3-Mercaptopropyl)trimethoxysilane-derived Porous Gel Monolith via Thioacetal Reaction-Assisted Sol-Gel Route. IOP Conference Series: Materials Science and Engineering, 2011, 18, 032003.	0.3	2
134	Synthesis of New Flexible Aerogels from Di- and Trifunctional Organosilanes. Materials Research Society Symposia Proceedings, 2011, 1306, 1.	0.1	4
135	Organic-inorganic hybrid aerogels with high mechanical properties via organotrialkoxysilane-derived sol-gel process. Journal of the Ceramic Society of Japan, 2011, 119, 16-22.	0.5	49
136	Facile preparation of monolithic magnesium titanates with hierarchical porosity. Journal of the Ceramic Society of Japan, 2011, 119, 440-444.	0.5	8
137	Pore Structure and Mechanical Properties of Poly(methylsilsesquioxane) Aerogels. IOP Conference Series: Materials Science and Engineering, 2011, 18, 032001.	0.3	4
138	Preparation of Hierarchically Porous Nanocrystalline <scp>CaTiO₃</scp> , <scp>SrTiO₃</scp> and <scp>BaTiO₃</scp> Perovskite Monoliths. Journal of the American Ceramic Society, 2011, 94, 3335-3339.	1.9	40
139	Fabrication of highly crosslinked methacrylate-based polymer monoliths with well-defined macropores via living radical polymerization. Polymer, 2011, 52, 4644-4647.	1.8	40
140	Controlled pore formation in organotrialkoxysilane-derived hybrids: from aerogels to hierarchically porous monoliths. Chemical Society Reviews, 2011, 40, 754-770.	18.7	204
141	New hierarchically porous titania monoliths for chromatographic separation media. Journal of Separation Science, 2011, 34, 3004-3010.	1.3	31
142	Transition from transparent aerogels to hierarchically porous monoliths in polymethylsilsesquioxane sol–gel system. Journal of Colloid and Interface Science, 2011, 357, 336-344.	5.0	64
143	Macroporous Carbon Monoliths with Large Surface Area for Electric Double-Layer Capacitor. Materials Research Society Symposia Proceedings, 2011, 1304, 1.	0.1	0
144	Organosiloxane Transparent Aerogels and Hierarchically Porous Monoliths. Materials Research Society Symposia Proceedings, 2011, 1306, 1.	0.1	0

#	Article	IF	CITATIONS
145	Facile preparation of transparent monolithic titania gels utilizing a chelating ligand and mineral salts. Journal of Sol-Gel Science and Technology, 2010, 53, 59-66.	1.1	32
146	In situ SAXS observation on metal–salt-derived alumina sol–gel system accompanied by phase separation. Journal of Colloid and Interface Science, 2010, 352, 303-308.	5.0	23
147	Fabrication of activated carbons with well-defined macropores derived from sulfonated poly(divinylbenzene) networks. Carbon, 2010, 48, 1757-1766.	5.4	69
148	Macro- and microporous carbon monoliths with high surface areas pyrolyzed from poly(divinylbenzene) networks. Comptes Rendus Chimie, 2010, 13, 207-211.	0.2	22
149	Facile Preparation of Hierarchically Porous TiO ₂ Monoliths. Journal of the American Ceramic Society, 2010, 93, 3110-3115.	1.9	92
150	Effects of Starting Compositions on the Properties of Methylsilsesquioxane Aerogels. Materials Research Society Symposia Proceedings, 2010, 1247, 1.	0.1	0
151	Hierarchically porous carbon monoliths with high surface area from bridged polysilsesquioxanes without thermal activation process. Chemical Communications, 2010, 46, 8037.	2.2	27
152	A New Route to Monolithic Macroporous SiC/C Composites from Biphenylene-bridged Polysilsesquioxane Gels. Chemistry of Materials, 2010, 22, 2541-2547.	3.2	45
153	Rigid Crosslinked Polyacrylamide Monoliths with Wellâ€Defined Macropores Synthesized by Living Polymerization. Macromolecular Rapid Communications, 2009, 30, 986-990.	2.0	59
154	Structural characterization of hierarchically porous alumina aerogel and xerogel monoliths. Journal of Colloid and Interface Science, 2009, 338, 506-513.	5.0	87
155	Pore Formation in Poly(divinylbenzene) Networks Derived from Organotellurium-Mediated Living Radical Polymerization. Macromolecules, 2009, 42, 1270-1277.	2.2	69
156	Spinodal decomposition in siloxane sol-gel systems in macroporous media. Soft Matter, 2009, 5, 3106.	1.2	26
157	Fabrication of macroporous silicon carbide ceramics by intramolecular carbothermal reduction of phenyl-bridged polysilsesquioxane. Journal of Materials Chemistry, 2009, 19, 7716.	6.7	38
158	Sol-gel synthesis, porous structure, and mechanical property of polymethylsilsesquioxane aerogels. Journal of the Ceramic Society of Japan, 2009, 117, 1333-1338.	0.5	42
159	Elastic organic–inorganic hybrid aerogels and xerogels. Journal of Sol-Gel Science and Technology, 2008, 48, 172-181.	1.1	114
160	Spin‣adder Iron Oxide: Sr ₃ Fe ₂ O ₅ . Angewandte Chemie - International Edition, 2008, 47, 5740-5745.	7.2	99
161	Facile Synthesis of Macroporous Cross-Linked Methacrylate Gels by Atom Transfer Radical Polymerization. Macromolecules, 2008, 41, 7186-7193.	2.2	88
162	Preparation of Macroporous Poly(divinylbenzene) Gels via Living Radical Polymerization. Materials Research Society Symposia Proceedings, 2008, 1134, 1.	0.1	0

#	Article	IF	CITATIONS
163	Elastic Aerogels and Xerogels Synthesized from Methyltrimethoxysilane (MTMS). Materials Research Society Symposia Proceedings, 2008, 1134, 1.	0.1	2
164	Phase Separation in Silica Sol-gel System Containing Anionic Surfactant. Materials Research Society Symposia Proceedings, 2007, 1056, 1.	0.1	0
165	Sol-gel Synthesis of Macroporous YAG from Ionic Precursors via Phase Separation Route. Journal of the Ceramic Society of Japan, 2007, 115, 925-928.	0.5	45
166	New Transparent Methylsilsesquioxane Aerogels and Xerogels with Improved Mechanical Properties. Advanced Materials, 2007, 19, 1589-1593.	11.1	377
167	Real space observation of silica monoliths in the formation process. Journal of Separation Science, 2007, 30, 2881-2887.	1.3	14
168	Three-dimensional observation of macroporous silica gels and the study on structural formation mechanism. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300, 245-252.	2.3	11
169	Anisotropic siloxane-based monolith prepared in confined spaces. Journal of Chromatography A, 2006, 1119, 88-94.	1.8	8
170	Thick silica gel coatings on methylsilsesquioxane monoliths using anisotropic phase separation. Journal of Separation Science, 2006, 29, 2463-2470.	1.3	26
171	Rigid Macroporous Poly(divinylbenzene) Monoliths with a Well-Defined Bicontinuous Morphology Prepared by Living Radical Polymerization. Advanced Materials, 2006, 18, 2407-2411.	11.1	132
172	New Macroporous Crosslinked Polymer Gels Prepared via Living Radical Polymerization. Materials Research Society Symposia Proceedings, 2006, 947, 1.	0.1	1
173	Phase Separation in Sol-Gel Systems of Organic-Inorganic Hybrids. Advances in Science and Technology, 2006, 45, 759.	0.2	0
174	Tailoring Spontaneous Pillar Structure Using Phase-Separating Organosiloxane Sol-Gel Systems in Micro-Fabricated Grooves. Journal of Sol-Gel Science and Technology, 2005, 35, 183-191.	1.1	6
175	Porous methylsiloxane gel thick film for millimeter-wave antenna substrate prepared by gap filling method. Materials Research Society Symposia Proceedings, 2005, 888, 1.	0.1	2
176	Organic–inorganic hybrid poly(silsesquioxane) monoliths with controlled macro- and mesopores. Journal of Materials Chemistry, 2005, 15, 3776.	6.7	137
177	Structural formation of hybrid siloxane-based polymer monolith in confined spaces. Journal of Separation Science, 2004, 27, 874-886.	1.3	109
178	Three-dimensional observation of phase-separated siloxane sol–gel structures in confined spaces using laser scanning confocal microscopy (LSCM). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241, 215-224.	2.3	33
179	THREE-DIMENSIONAL OBSERVATION OF PHASE-SEPARATED SOL-GEL STRUCTURES USING LASER SCANNING CONFOCAL MICROSCOPY (LSCM). , 2004, , .		0
180	Phase Separation in Methylsiloxane Sol-Gel Systems in a Small Confined Space. Journal of Sol-Gel Science and Technology, 2003, 26, 157-160.	1.1	18

#	Article	IF	CITATIONS
181	Interface-Directed Web-to-Pillar Transition of Microphase-Separated Siloxane Gels. Langmuir, 2003, 19, 9101-9103.	1.6	12
182	Three-Dimensional Observation of Phase-Separated Silica-Based Gels Confined between Parallel Plates. Langmuir, 2003, 19, 5581-5585.	1.6	36
183	Porous polymerâ€derived ceramics: Flexible morphological and compositional controls through sol–gel chemistry. Journal of the American Ceramic Society, 0, , .	1.9	10