
Kuo-Chen Yeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4211032/publications.pdf Version: 2024-02-01

KUO-CHEN YEH

#	Article	IF	CITATIONS
1	The Composite Genome of the Legume Symbiont <i>Sinorhizobium meliloti</i> . Science, 2001, 293, 668-672.	12.6	1,098
2	A Cyanobacterial Phytochrome Two-Component Light Sensory System. Science, 1997, 277, 1505-1508.	12.6	529
3	PKS1, a Substrate Phosphorylated by Phytochrome That Modulates Light Signaling in Arabidopsis. Science, 1999, 284, 1539-1541.	12.6	426
4	Eukaryotic phytochromes: Light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13976-13981.	7.1	414
5	Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 9883-9888.	7.1	278
6	Arabidopsis IRT3 is a zincâ€regulated and plasma membrane localized zinc/iron transporter. New Phytologist, 2009, 182, 392-404.	7.3	249
7	Aux/IAA Proteins Are Phosphorylated by Phytochrome in Vitro. Plant Physiology, 2000, 124, 1728-1738.	4.8	232
8	A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15826-15830.	7.1	198
9	Role of root exudates in metal acquisition and tolerance. Current Opinion in Plant Biology, 2017, 39, 66-72.	7.1	178
10	Genes Associated with Heavy Metal Tolerance and Accumulation in Zn/Cd HyperaccumulatorArabidopsis halleri:Â A Genomic Survey with cDNA Microarray. Environmental Science & Technology, 2006, 40, 6792-6798.	10.0	166
11	IRT1 DEGRADATION FACTOR1, a RING E3 Ubiquitin Ligase, Regulates the Degradation of IRON-REGULATED TRANSPORTER1 in <i>Arabidopsis</i> . Plant Cell, 2013, 25, 3039-3051.	6.6	151
12	Differential expression and regulation of ironâ€regulated metal transporters in <i>Arabidopsis halleri</i> and <i>Arabidopsis thaliana –</i> the role in zinc tolerance. New Phytologist, 2011, 190, 125-137.	7.3	127
13	Copper Chaperone Antioxidant Protein1 Is Essential for Copper Homeostasis Â. Plant Physiology, 2012, 159, 1099-1110.	4.8	104
14	Arabidopsis SUMO E3 Ligase SIZ1 Is Involved in Excess Copper Tolerance Â. Plant Physiology, 2011, 156, 2225-2234.	4.8	94
15	Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17584-17591.	7.1	91
16	Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators. Environmental Pollution, 2009, 157, 1945-1952.	7.5	90
17	<i>ZINC TOLERANCE INDUCED BY IRON 1</i> reveals the importance of glutathione in the crossâ€homeostasis between zinc and iron in <i>Arabidopsis thaliana</i> . Plant Journal, 2012, 69, 1006-1017.	5.7	83
18	Iron Is Involved in the Maintenance of Circadian Period Length in Arabidopsis Â. Plant Physiology, 2013, 161, 1409-1420.	4.8	70

Кио-Снем Үен

#	Article	lF	CITATIONS
19	Proteomic survey of copper-binding proteins inArabidopsis roots by immobilized metal affinity chromatography and mass spectrometry. Proteomics, 2006, 6, 2746-2758.	2.2	67
20	Root-Secreted Nicotianamine from Arabidopsis halleri Facilitates Zinc Hypertolerance by Regulating Zinc Bioavailability. Plant Physiology, 2014, 166, 839-852.	4.8	65
21	Glutathione plays an essential role in nitric oxideâ€mediated ironâ€deficiency signaling and ironâ€deficiency tolerance in <i>Arabidopsis</i> . Plant Journal, 2015, 84, 464-477.	5.7	61
22	Modulatory effects of Echinacea purpurea extracts on human dendritic cells: A cell- and gene-based study. Genomics, 2006, 88, 801-808.	2.9	52
23	Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Science, 2006, 170, 976-985.	3.6	50
24	Identification of metal species by ESI-MS/MS through release of free metals from the corresponding metal-ligand complexes. Scientific Reports, 2016, 6, 26785.	3.3	48
25	Modification of Distinct Aspects of Photomorphogenesis via Targeted Expression of Mammalian Biliverdin Reductase in Transgenic Arabidopsis Plants. Plant Physiology, 1999, 121, 629-640.	4.8	47
26	Genomics and proteomics of immune modulatory effects of a butanol fraction of echinacea purpurea in human dendritic cells. BMC Genomics, 2008, 9, 479.	2.8	46
27	Control of Zn uptake in Arabidopsis halleri: a balance between Zn and Fe. Frontiers in Plant Science, 2013, 4, 281.	3.6	46
28	Luteolin and GroESL Modulate In Vitro Activity of NodD. Journal of Bacteriology, 2002, 184, 525-530.	2.2	43
29	A sensitive LCâ€ESIâ€Qâ€TOFâ€MS method reveals novel phytosiderophores and phytosiderophore–iron complexes in barley. New Phytologist, 2012, 195, 951-961.	7.3	37
30	<i>Sâ€</i> Nitrosoglutathione works downstream of nitric oxide to mediate ironâ€deficiency signaling in Arabidopsis. Plant Journal, 2018, 94, 157-168.	5.7	32
31	Triplin, a small molecule, reveals copper ion transport in ethylene signaling from ATX1 to RAN1. PLoS Genetics, 2017, 13, e1006703.	3.5	32
32	Overexpression of Arabidopsis <i>ATX1</i> retards plant growth under severe copper deficiency. Plant Signaling and Behavior, 2012, 7, 1082-1083.	2.4	29
33	Alternative Functions of Arabidopsis YELLOW STRIPE-LIKE3: From Metal Translocation to Pathogen Defense. PLoS ONE, 2014, 9, e98008.	2.5	24
34	Effect of Gallium Exposure in <i>Arabidopsis thaliana</i> is Similar to Aluminum Stress. Environmental Science & Technology, 2017, 51, 1241-1248.	10.0	22
35	The dual benefit of a dominant mutation in Arabidopsis <i>IRON DEFICIENCY TOLERANT1</i> for iron biofortification and heavy metal phytoremediation. Plant Biotechnology Journal, 2020, 18, 1200-1210.	8.3	22
36	Assessment of indium toxicity to the model plant Arabidopsis. Journal of Hazardous Materials, 2020, 387, 121983.	12.4	20

Кио-Снем Үен

#	Article	IF	CITATIONS
37	Evolutionary analysis of iron (Fe) acquisition system in <i>Marchantia polymorpha</i> . New Phytologist, 2016, 211, 569-583.	7.3	17
38	Indium Uptake and Accumulation by Rice and Wheat and Health Risk Associated with Their Consumption. Environmental Science & amp; Technology, 2020, 54, 14946-14954.	10.0	16
39	Point mutations in the chloroplast 16s rRNA gene confer streptomycin resistance in Nicotiana plumbaginifolia. Current Genetics, 1994, 26, 132-135.	1.7	14
40	A Vicilin-Like Seed Storage Protein, PAP85, Is Involved in Tobacco Mosaic Virus Replication. Journal of Virology, 2013, 87, 6888-6900.	3.4	14
41	Effect of Cu content on the activity of Cu/ZnSOD1 in the Arabidopsis SUMO E3 ligase <i>siz1</i> mutant. Plant Signaling and Behavior, 2011, 6, 1428-1430.	2.4	12
42	Histone H3 lysine4 trimethylationâ€regulated GRF11 expression is essential for the ironâ€deficiency response in Arabidopsis thaliana. New Phytologist, 2021, 230, 244-258.	7.3	12
43	Insight into the mechanism of indium toxicity in rice. Journal of Hazardous Materials, 2022, 429, 128265.	12.4	8
44	A HemK class glutamineâ€methyltransferase is involved in the termination of translation and essential for iron homeostasis in Arabidopsis. New Phytologist, 2020, 226, 1361-1374.	7.3	7
45	Divalent nutrient cations: Friend and foe during zinc stress in rice. Plant, Cell and Environment, 2021, 44, 3358-3375.	5.7	5
46	Soil gallium speciation and resultingÂgallium uptake by rice plants. Journal of Hazardous Materials, 2022, 424, 127582.	12.4	5
47	Small-Molecules Selectively Modulate Iron-Deficiency Signaling Networks in Arabidopsis. Frontiers in Plant Science, 2019, 10, 8.	3.6	4

48 Root Proteome. , 0, , 223-237.

0