Zhong-Yong Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4210771/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defect-rich cobalt pyrophosphate hybrids decorated Cd0.5Zn0.5S for efficient photocatalytic hydrogen evolution: Defect and interface engineering. Journal of Colloid and Interface Science, 2022, 606, 544-555.	5.0	23
2	A "gas-breathing―integrated air diffusion electrode design with improved oxygen utilization efficiency for high-performance Zn-air batteries. Chemical Engineering Journal, 2022, 431, 133210.	6.6	18
3	Engineering heterostructured Ni@Ni(OH)2 core-shell nanomaterials for synergistically enhanced water electrolysis. Green Energy and Environment, 2022, 7, 1024-1032.	4.7	17
4	Design strategies of phosphorus-containing catalysts for photocatalytic, photoelectrochemical and electrocatalytic water splitting. Green Chemistry, 2022, 24, 713-747.	4.6	45
5	Increasing the utilization of SiBeta support to anchor dual active sites of transition metal and heteropolyacids for efficient oxidative desulfurization of fuel. Applied Catalysis B: Environmental, 2022, 305, 121044.	10.8	27
6	Controlled Synthesis of Highly Active Nonstoichiometric Tin Phosphide/Carbon Composites for Electrocatalysis and Electrochemical Energy Storage Applications. ACS Sustainable Chemistry and Engineering, 2022, 10, 1482-1498.	3.2	15
7	Triple-phase oxygen electrocatalysis of hollow spherical structures for rechargeable Zn-Air batteries. Applied Catalysis B: Environmental, 2022, 307, 121190.	10.8	46
8	Nickel phosphonate-derived Ni ₂ P@N-doped carbon co-catalyst with built-in electron-bridge for boosting photocatalytic hydrogen evolution. Inorganic Chemistry Frontiers, 2022, 9, 1964-1972.	3.0	11
9	Charge redistribution caused by sulfur doping of bimetal FeCo phosphides supported on heteroatoms-doped graphene for Zn-air batteries with stable cycling. Journal of Energy Chemistry, 2022, 71, 619-630.	7.1	26
10	Design strategies of supported metal-based catalysts for efficient oxidative desulfurization of fuel. Journal of Industrial and Engineering Chemistry, 2022, 108, 1-14.	2.9	20
11	Interface engineering of inâ^'situ formed nickel hydr(oxy)oxides on nickel nitrides to boost alkaline hydrogen electrocatalysis. Applied Catalysis B: Environmental, 2022, 309, 121279.	10.8	34
12	Self-Promoted Electrocatalysts Derived from Surface Reconstruction for Rechargeable Zinc–Air Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 6456-6465.	3.2	9
13	Interface engineering for boosting electrocatalytic performance of CoP-Co2P polymorphs for all-pH hydrogen evolution reaction and alkaline overall water splitting. Science China Materials, 2022, 65, 2433-2444.	3.5	15
14	Precisely modifying Co2P/black TiO2 S-scheme heterojunction by in situ formed P and C dopants for enhanced photocatalytic H2 production. Applied Catalysis B: Environmental, 2022, 315, 121546.	10.8	80
15	Atomic Insight into the Local Structure and Microenvironment of Isolated Co-Motifs in MFI Zeolite Frameworks for Propane Dehydrogenation. Journal of the American Chemical Society, 2022, 144, 12127-12137.	6.6	60
16	Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: Recent advances. Green Energy and Environment, 2021, 6, 620-643.	4.7	57
17	Surface/interface engineering of high-efficiency noble metal-free electrocatalysts for energy-related electrochemical reactions. Journal of Energy Chemistry, 2021, 54, 89-104.	7.1	65
18	Encapsulating vanadium nitride nanodots into N,S-codoped graphitized carbon for synergistic electrocatalytic nitrogen reduction and aqueous Zn-N2 battery. Applied Catalysis B: Environmental, 2021, 280, 119434.	10.8	51

#	Article	IF	CITATIONS
19	Insights into efficient transition metal-nitrogen/carbon oxygen reduction electrocatalysts. Journal of Energy Chemistry, 2021, 56, 470-485.	7.1	56
20	FeNi doped porous carbon as an efficient catalyst for oxygen evolution reaction. Frontiers of Chemical Science and Engineering, 2021, 15, 279-287.	2.3	23
21	Design Strategies of Transitionâ€Metal Phosphate and Phosphonate Electrocatalysts for Energyâ€Related Reactions. ChemSusChem, 2021, 14, 130-149.	3.6	48
22	Iron-doped titanium dioxide hollow nanospheres for efficient nitrogen fixation and Zn–N ₂ aqueous batteries. Journal of Materials Chemistry A, 2021, 9, 4026-4035.	5.2	36
23	Hollow cobalt phosphate microspheres for sustainable electrochemical ammonia production through rechargeable Zn–N ₂ batteries. Journal of Materials Chemistry A, 2021, 9, 11370-11380.	5.2	27
24	Insight into the Active Contribution of N-Coordinated Cobalt Phosphate Nanocrystals Coupled with Carbon Nanotubes for Oxygen Electrochemistry. ACS Sustainable Chemistry and Engineering, 2021, 9, 1856-1866.	3.2	21
25	Engineering morphologies of cobalt oxide/phosphate-carbon nanohybrids for high-efficiency electrochemical water oxidation and reduction. Journal of Energy Chemistry, 2021, 52, 139-146.	7.1	28
26	Efficient oxidative desulfurization over highly dispersed molybdenum oxides supported on mesoporous titanium phosphonates. Microporous and Mesoporous Materials, 2021, 315, 110921.	2.2	32
27	Nanoporous Metal Phosphonate Hybrid Materials as a Novel Platform for Emerging Applications: A Critical Review. Small, 2021, 17, e2005304.	5.2	48
28	Design Strategies of Nonâ€Noble Metalâ€Based Electrocatalysts for Twoâ€Electron Oxygen Reduction to Hydrogen Peroxide. ChemSusChem, 2021, 14, 1616-1633.	3.6	46
29	Aqueous Rechargeable Zn–N ₂ Battery Assembled by Bifunctional Cobalt Phosphate Nanocrystals-Loaded Carbon Nanosheets for Simultaneous NH ₃ Production and Power Generation. ACS Applied Materials & Interfaces, 2021, 13, 12106-12117.	4.0	32
30	Ampoule method fabricated sulfur vacancy-rich N-doped ZnS electrodes for ammonia production in alkaline media. Materials for Renewable and Sustainable Energy, 2021, 10, 1.	1.5	11
31	An electro-activated bimetallic zinc-nickel hydroxide cathode for supercapacitor with super-long 140,000 cycle durability. Nano Energy, 2021, 82, 105727.	8.2	68
32	Mesoporous Cd Zn S with abundant surface defects for efficient photocatalytic hydrogen production. Journal of Colloid and Interface Science, 2021, 589, 25-33.	5.0	29
33	Identifying the Dominant Role of Pyridinic-N–Mo Bonding in Synergistic Electrocatalysis for Ambient Nitrogen Reduction. ACS Nano, 2021, 15, 12109-12118.	7.3	51
34	Enhanced performances of bimetallic Ga-Pt nanoclusters confined within silicalite-1 zeolite in propane dehydrogenation. Journal of Colloid and Interface Science, 2021, 593, 304-314.	5.0	25
35	Spatially isolated cobalt oxide sites derived from MOFs for direct propane dehydrogenation. Journal of Colloid and Interface Science, 2021, 594, 113-121.	5.0	28
36	Aqueous Al-N2 battery assembled by hollow molybdenum phosphate microspheres for simultaneous NH3 production and power generation. Chemical Engineering Journal, 2021, 418, 129447.	6.6	27

#	Article	IF	CITATIONS
37	Hierarchical porous N,S-codoped carbon with trapped Mn species for efficient pH-universal electrochemical oxygen reduction in Zn-air battery. Journal of Industrial and Engineering Chemistry, 2021, 100, 92-98.	2.9	6
38	Activity Promotion of Core and Shell in Multifunctional Core–Shell Co ₂ P@NC Electrocatalyst by Secondary Metal Doping for Water Electrolysis and Znâ€Air Batteries. Small, 2021, 17, e2101856.	5.2	68
39	Facile synthesis of nitrogen, phosphorus and sulfur tri-doped carbon nanosheets as efficient oxygen electrocatalyst for rechargeable Zn-air batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 273, 115439.	1.7	4
40	Insight into the valence state of sisal-like MoO2 nanosheet arrays for N2 electrolysis. Chemical Engineering Journal, 2021, 426, 130761.	6.6	13
41	Heterojunction-induced nickel-based oxygen vacancies on N-enriched porous carbons for enhanced alkaline hydrogen oxidation and oxygen reduction. Materials Chemistry Frontiers, 2021, 5, 2399-2408.	3.2	19
42	In Situ Sulfidation for Controllable Heterointerface of Cobalt Oxides–Cobalt Sulfides on 3D Porous Carbon Realizing Efficient Rechargeable Liquid-/Solid-State Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 510-520.	3.2	25
43	Cobalt nanoparticle decorated N-doped carbons derived from a cobalt covalent organic framework for oxygen electrochemistry. Frontiers of Chemical Science and Engineering, 2021, 15, 1550-1560.	2.3	13
44	An overview and recent advances in electrocatalysts for direct seawater splitting. Frontiers of Chemical Science and Engineering, 2021, 15, 1408-1426.	2.3	39
45	Preface to special issue on "Advanced Materials and Catalysis― Frontiers of Chemical Science and Engineering, 2021, 15, 1357-1359.	2.3	1
46	Ultrafine Transition Metal Phosphide Nanoparticles Semiembedded in Nitrogen-Doped Carbon Nanotubes for Efficient Counter Electrode Materials in Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2021, 4, 13952-13962.	2.5	14
47	Molybdenum-based nanoparticles (Mo2C, MoP and MoS2) coupled heteroatoms-doped carbon nanosheets for efficient hydrogen evolution reaction. Applied Catalysis B: Environmental, 2020, 263, 118352.	10.8	124
48	Nature of active phase of VO catalysts supported on SiBeta for direct dehydrogenation of propane to propylene. Chinese Journal of Catalysis, 2020, 41, 276-285.	6.9	47
49	Phosphonate-derived nitrogen-doped cobalt phosphate/carbon nanotube hybrids as highly active oxygen reduction reaction electrocatalysts. Chinese Journal of Catalysis, 2020, 41, 259-267.	6.9	31
50	CrO supported on high-silica HZSM-5 for propane dehydrogenation. Journal of Energy Chemistry, 2020, 47, 225-233.	7.1	51
51	FeNi Nanoalloys Encapsulated in N-Doped CNTs Tangled with N-Doped Carbon Nanosheets as Efficient Multifunctional Catalysts for Overall Water Splitting and Rechargeable Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 223-237.	3.2	48
52	Molecular-Level Synthesis of Cobalt Phosphide Nanocrystals Confined in Highly Nitrogen-Doped Mesoporous Carbon Electrocatalyst for Highly Efficient Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 17245-17261.	3.2	33
53	Ni-doped hierarchical porous carbon with a p/n-junction promotes electrochemical water splitting. International Journal of Hydrogen Energy, 2020, 45, 17493-17503.	3.8	10
54	Cr/Al2O3 catalysts with strong metal-support interactions for stable catalytic dehydrogenation of propane to propylene. Molecular Catalysis, 2020, 493, 111052.	1.0	18

#	Article	IF	CITATIONS
55	Melamineâ€Induced N,Sâ€Codoped Hierarchically Porous Carbon Nanosheets for Enhanced Electrocatalytic Oxygen Reduction. ChemistrySelect, 2020, 5, 3477-3484.	0.7	13
56	Ultrasmall PtZn bimetallic nanoclusters encapsulated in silicalite-1 zeolite with superior performance for propane dehydrogenation. Journal of Catalysis, 2020, 385, 61-69.	3.1	121
57	Transition Metal Phosphideâ€Based Materials for Efficient Electrochemical Hydrogen Evolution: A Critical Review. ChemSusChem, 2020, 13, 3357-3375.	3.6	218
58	Urchin-like Al-Doped Co ₃ O ₄ Nanospheres Rich in Surface Oxygen Vacancies Enable Efficient Ammonia Electrosynthesis. ACS Applied Materials & Interfaces, 2020, 12, 17502-17508.	4.0	76
59	Insights into Transition Metal Phosphate Materials for Efficient Electrocatalysis. ChemCatChem, 2020, 12, 3797-3810.	1.8	104
60	Ambient Ammonia Electrosynthesis: Current Status, Challenges, and Perspectives. ChemSusChem, 2020, 13, 3061-3078.	3.6	65
61	In situ growth of Ni-encapsulated and N-doped carbon nanotubes on N-doped ordered mesoporous carbon for high-efficiency triiodide reduction in dye-sensitized solar cells. Chemical Engineering Journal, 2020, 390, 124633.	6.6	74
62	Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries. Chemical Engineering Journal, 2020, 389, 124408.	6.6	123
63	Promotion of electrocatalytic nitrogen reduction reaction on N-doped porous carbon with secondary heteroatoms. Applied Catalysis B: Environmental, 2020, 266, 118633.	10.8	103
64	Atomic heterojunction-induced electron interaction in P-doped g-C3N4 nanosheets supported V-based nanocomposites for enhanced oxidative desulfurization. Chemical Engineering Journal, 2020, 387, 124164.	6.6	56
65	N-doped porous carbon hollow microspheres encapsulated with iron-based nanocomposites as advanced bifunctional catalysts for rechargeable Zn-air battery. Journal of Energy Chemistry, 2020, 49, 14-21.	7.1	59
66	Activated carbon with heteroatoms from organic salt for hydrogen evolution reaction. Microporous and Mesoporous Materials, 2020, 297, 110033.	2.2	14
67	Ultrasmall Co confined in the silanols of dealuminated beta zeolite: A highly active and selective catalyst for direct dehydrogenation of propane to propylene. Journal of Catalysis, 2020, 383, 77-87.	3.1	88
68	Aluminum and phosphorus codoped "superaerophobic―Co3O4 microspheres for highly efficient electrochemical water splitting and Zn-air batteries. Journal of Energy Chemistry, 2020, 50, 324-331.	7.1	31
69	New Opportunities for Functional Materials from Metal Phosphonates. , 2020, 2, 582-594.		33
70	ZIF-supported AuCu nanoalloy for ammonia electrosynthesis from nitrogen and thin air. Journal of Materials Chemistry A, 2020, 8, 8868-8874.	5.2	30
71	Facile synthesis of molybdenum carbide nanoparticles in situ decorated on nitrogen-doped porous carbons for hydrogen evolution reaction. Journal of Energy Chemistry, 2019, 32, 78-84.	7.1	31
72	P-doped mesoporous carbons for high-efficiency electrocatalytic oxygen reduction. Chinese Journal of Catalysis, 2019, 40, 1366-1374.	6.9	38

#	Article	IF	CITATIONS
73	Mesoporous carbons as metal-free catalysts for propane dehydrogenation: Effect of the pore structure and surface property. Chinese Journal of Catalysis, 2019, 40, 1385-1394.	6.9	30
74	State-of-the-art catalysts for direct dehydrogenation of propane to propylene. Chinese Journal of Catalysis, 2019, 40, 1233-1254.	6.9	151
75	Iron-Salt Thermally Emitted Strategy to Prepare Graphene-like Carbon Nanosheets with Trapped Fe Species for an Efficient Electrocatalytic Oxygen Reduction Reaction in the All-pH Range. ACS Applied Materials & Interfaces, 2019, 11, 27823-27832.	4.0	23
76	Self-supported MoP nanocrystals embedded in N,P-codoped carbon nanofibers <i>via</i> a polymer-confinement route for electrocatalytic hydrogen production. Materials Chemistry Frontiers, 2019, 3, 1872-1881.	3.2	19
77	ZnO supported on high-silica HZSM-5 as efficient catalysts for direct dehydrogenation of propane to propylene. Molecular Catalysis, 2019, 476, 110508.	1.0	28
78	Organic–Inorganic Metal Phosphonate-Derived Nitrogen-Doped Core–Shell Ni ₂ P Nanoparticles Supported on Ni Foam for Efficient Hydrogen Evolution Reaction at All pH Values. ACS Sustainable Chemistry and Engineering, 2019, 7, 12770-12778.	3.2	41
79	Organic–Inorganic Cobalt-Phosphonate-Derived Hollow Cobalt Phosphate Spherical Hybrids for Highly Efficient Oxygen Evolution. ACS Sustainable Chemistry and Engineering, 2019, 7, 13559-13568.	3.2	58
80	Enhanced Synergetic Catalytic Effect of Mo ₂ C/NCNTs@Co Heterostructures in Dye-Sensitized Solar Cells: Fine-Tuned Energy Level Alignment and Efficient Charge Transfer Behavior. ACS Applied Materials & Interfaces, 2019, 11, 42156-42171.	4.0	63
81	Well-defined CoP/Ni ₂ P nanohybrids encapsulated in a nitrogen-doped carbon matrix as advanced multifunctional electrocatalysts for efficient overall water splitting and zinc–air batteries. Materials Chemistry Frontiers, 2019, 3, 2428-2436.	3.2	44
82	Self-supported Al-doped cobalt phosphide nanosheets grown on three-dimensional Ni foam for highly efficient water reduction and oxidation. Inorganic Chemistry Frontiers, 2019, 6, 74-81.	3.0	66
83	Facile synthesis of Mo2C nanoparticles on N-doped carbon nanotubes with enhanced electrocatalytic activity for hydrogen evolution and oxygen reduction reactions. Journal of Energy Chemistry, 2019, 38, 68-77.	7.1	58
84	Bifunctional Electrocatalysts of Cobalt Sulfide Nanocrystals in Situ Decorated on N,S-Codoped Porous Carbon Sheets for Highly Efficient Oxygen Electrochemistry. ACS Sustainable Chemistry and Engineering, 2019, 7, 10121-10131.	3.2	39
85	Engineering the Core–Shell-Structured NCNTs-Ni ₂ Si@Porous Si Composite with Robust Ni–Si Interfacial Bonding for High-Performance Li-Ion Batteries. Langmuir, 2019, 35, 6321-6332.	1.6	43
86	A universal route to N-coordinated metals anchored on porous carbon nanosheets for highly efficient oxygen electrochemistry. Journal of Materials Chemistry A, 2019, 7, 13591-13601.	5.2	48
87	A facile hydrothermal method for preparation of fluorescent carbon dots on application of Fe ³⁺ and fingerprint detection. Methods and Applications in Fluorescence, 2019, 7, 035001.	1.1	11
88	New insight into the enhanced catalytic performance of ZnPt/HZSM-5 catalysts for direct dehydrogenation of propane to propylene. Catalysis Science and Technology, 2019, 9, 1979-1988.	2.1	60
89	Well-Defined Phase-Controlled Cobalt Phosphide Nanoparticles Encapsulated in Nitrogen-Doped Graphitized Carbon Shell with Enhanced Electrocatalytic Activity for Hydrogen Evolution Reaction at All-pH. ACS Sustainable Chemistry and Engineering, 2019, 7, 8993-9001.	3.2	78
90	Ultra-deep desulphurization of both model and commercial diesel fuels by adsorption method. Journal of Environmental Chemical Engineering, 2019, 7, 102957.	3.3	27

#	Article	IF	CITATIONS
91	Framework-confined Sn in Si-beta stabilizing ultra-small Pt nanoclusters as direct propane dehydrogenation catalysts with high selectivity and stability. Catalysis Science and Technology, 2019, 9, 6993-7002.	2.1	57
92	Nitrogen-containing activated carbon of improved electrochemical performance derived from cotton stalks using indirect chemical activation. Journal of Colloid and Interface Science, 2019, 540, 285-294.	5.0	24
93	Monolithic NixMy (MÂ= OH, P, S, Se) nanosheets as efficient and stable electrocatalysts for overall water splitting. Electrochimica Acta, 2019, 295, 148-156.	2.6	21
94	ZnO Nanoclusters Supported on Dealuminated Zeolite β as a Novel Catalyst for Direct Dehydrogenation of Propane to Propylene. ChemCatChem, 2019, 11, 868-877.	1.8	89
95	Direct Synthesis of Nitrogen, Phosphorus, and Sulfur Triâ€doped Carbon Nanorods as Highly Efficient Oxygen Reduction and Evolution Electrocatalysts. ChemCatChem, 2018, 10, 3260-3268.	1.8	30
96	Direct dehydrogenation of propane to propylene on surface-oxidized multiwall carbon nanotubes. Applied Catalysis A: General, 2018, 559, 85-93.	2.2	39
97	Fe Nanocatalysts Supported on Dealuminated ZSMâ€5 for Efficient Decomposition of Ammonia to CO _x â€Free Hydrogen. ChemistrySelect, 2018, 3, 4439-4447.	0.7	6
98	Two-dimensional mica nanosheets supported Fe nanoparticles for NH3 decomposition to hydrogen. Molecular Catalysis, 2018, 448, 162-170.	1.0	23
99	CaTiO3 perovskite in the framework of activated carbon and its effect on enhanced electrochemical capacitance. Electrochimica Acta, 2018, 268, 73-81.	2.6	29
100	Titanium Phosphonate Based Metal–Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2018, 130, 3276-3281.	1.6	29
101	Natural clay attapulgite as the raw material for synthesis of Al/Ti/Mg-containing mesoporous silicates with cubic, 3D hexagonal, and lamellar mesostructures. Journal of Sol-Gel Science and Technology, 2018, 85, 638-646.	1.1	7
102	Titanium Phosphonate Based Metal–Organic Frameworks with Hierarchical Porosity for Enhanced Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2018, 57, 3222-3227.	7.2	157
103	Castanea mollissima shell-derived porous carbons as metal-free catalysts for highly efficient dehydrogenation of propane to propylene. Catalysis Today, 2018, 316, 214-222.	2.2	36
104	Ultrafine metal phosphide nanoparticles in situ encapsulated in porous N,P-codoped nanofibrous carbon coated on carbon paper for effective water splitting. Electrochimica Acta, 2018, 261, 454-463.	2.6	45
105	Ni nanoparticles supported on mica for efficient decomposition of ammonia to CO -free hydrogen. International Journal of Hydrogen Energy, 2018, 43, 9663-9676.	3.8	38
106	High-surface-area activated red mud for efficient removal of methylene blue from wastewater. Adsorption Science and Technology, 2018, 36, 62-79.	1.5	31
107	Rationally Designed Co ₃ O ₄ –C Nanowire Arrays on Ni Foam Derived From Metal Organic Framework as Reversible Oxygen Evolution Electrodes with Enhanced Performance for Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 707-718.	3.2	92
108	Hierarchically Porous Heteroatomsâ€doped Vesicaâ€like Carbons as Highly Efficient Bifunctional Electrocatalysts for Znâ€air Batteries. ChemCatChem, 2018, 10, 5297-5305.	1.8	34

#	Article	IF	CITATIONS
109	Nitrogen-Doped Defect-Rich Graphitic Carbon Nanorings with CoO _{<i>x</i>} Nanoparticles as Highly Efficient Electrocatalyst for Oxygen Electrochemistry. ACS Sustainable Chemistry and Engineering, 2018, 6, 15811-15821.	3.2	35
110	Well-Defined Mo ₂ C Nanoparticles Embedded in Porous N-Doped Carbon Matrix for Highly Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2018, 10, 33276-33286.	4.0	67
111	Bean dregsâ€derived hierarchical porous carbons as metalâ€free catalysts for efficient dehydrogenation of propane to propylene. Journal of Chemical Technology and Biotechnology, 2018, 93, 3410-3417.	1.6	16
112	Catalytic decomposition of ammonia to COx-free hydrogen over Ni/ZSM-5 catalysts: A comparative study of the preparation methods. Applied Catalysis A: General, 2018, 562, 49-57.	2.2	74
113	Fe/ZSM-5 catalysts for ammonia decomposition to COx-free hydrogen: Effect of SiO2/Al2O3 ratio. Molecular Catalysis, 2018, 455, 14-22.	1.0	51
114	Uniquely integrated Fe-doped Ni(OH) ₂ nanosheets for highly efficient oxygen and hydrogen evolution reactions. Nanoscale, 2018, 10, 10620-10628.	2.8	142
115	Electrodeposited P Co nanoparticles in deep eutectic solvents and their performance in water splitting. International Journal of Hydrogen Energy, 2018, 43, 10448-10457.	3.8	22
116	Ultrafine molybdenum phosphide nanocrystals on a highly porous N,P-codoped carbon matrix as an efficient catalyst for the hydrogen evolution reaction. Materials Chemistry Frontiers, 2018, 2, 1987-1996.	3.2	36
117	Rational Dispersion of Co ₂ P ₂ O ₇ Fine Particles on N,P-Codoped Reduced Graphene Oxide Aerogels Leading to Enhanced Reversible Oxygen Reduction Ability for Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 9793-9803.	3.2	47
118	Strategic Design of Vacancy-Enriched Fe _{1–<i>x</i>} S Nanoparticles Anchored on Fe ₃ C-Encapsulated and N-Doped Carbon Nanotube Hybrids for High-Efficiency Triiodide Reduction in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 31208-31224.	4.0	68
119	Formation of aluminum diphosphonate mesostructures: The effect of aluminum source. Journal of Colloid and Interface Science, 2018, 532, 718-726.	5.0	0
120	Nitrogen-doped carbon materials with cubic ordered mesostructure: low-temperature autoclaving synthesis for electrochemical supercapacitor and CO2 capture. RSC Advances, 2017, 7, 12524-12533.	1.7	19
121	General Strategy for Controlled Synthesis of Ni _{<i>x</i>} P _{<i>y</i>} /Carbon and Its Evaluation as a Counter Electrode Material in Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 17949-17960.	4.0	69
122	One-pot Synthesis of Mo2N/NC Catalysts with Enhanced Electrocatalytic Activity for Hydrogen Evolution Reaction. Electrochimica Acta, 2017, 246, 536-543.	2.6	70
123	Boron and phosphorus co-doped carbon counter electrode for efficient hole-conductor-free perovskite solar cell. Chemical Engineering Journal, 2017, 313, 791-800.	6.6	103
124	Controlled Synthesis of Nickel Encapsulated into Nitrogen-Doped Carbon Nanotubes with Covalent Bonded Interfaces: The Structural and Electronic Modulation Strategy for an Efficient Electrocatalyst in Dye-Sensitized Solar Cells. Chemistry of Materials, 2017, 29, 9680-9694.	3.2	96
125	CdS-Polydopamine-Derived N,S-Codoped Hierarchically Porous Carbons as Highly Active Electrocatalyst for Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2017, 5, 9914-9922.	3.2	41
126	Hierarchical Nickel Sulfide Nanosheets Directly Grown on Ni Foam: A Stable and Efficient Electrocatalyst for Water Reduction and Oxidation in Alkaline Medium. ACS Sustainable Chemistry and Engineering, 2017, 5, 7203-7210.	3.2	122

#	Article	IF	CITATIONS
127	Nitrogen and sulfur co-doped mesoporous hollow carbon microspheres for highly efficient oxygen reduction electrocatalysts. International Journal of Hydrogen Energy, 2017, 42, 19010-19018.	3.8	45
128	Integrated Ni2P nanosheet arrays on three-dimensional Ni foam for highly efficient water reduction and oxidation. Journal of Energy Chemistry, 2017, 26, 1196-1202.	7.1	100
129	Transition metal–phosphorus-based materials for electrocatalytic energy conversion reactions. Catalysis Science and Technology, 2017, 7, 330-347.	2.1	132
130	One-pot carbonization enrichment of nitrogen in microporous carbon spheres for efficient CO ₂ capture. Journal of Materials Chemistry A, 2017, 5, 418-425.	5.2	74
131	Threeâ€Dimensional Electrocatalysts for Sustainable Water Splitting Reactions. European Journal of Inorganic Chemistry, 2016, 2016, 1916-1923.	1.0	44
132	CuO catalysts supported on activated red mud for efficient catalytic carbon monoxide oxidation. Chemical Engineering Journal, 2016, 302, 23-32.	6.6	70
133	High-surface-area activated red mud supported Co ₃ O ₄ catalysts for efficient catalytic oxidation ofÂCO. RSC Advances, 2016, 6, 94748-94755.	1.7	16
134	N-, P- and B-doped mesoporous carbons for direct dehydrogenation of propane. RSC Advances, 2016, 6, 94636-94642.	1.7	41
135	Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine. Chemical Society Reviews, 2016, 45, 3479-3563.	18.7	1,134
136	Nanogold mesoporous iron promoted ceria catalysts for total and preferential CO oxidation reactions. Journal of Molecular Catalysis A, 2016, 414, 62-71.	4.8	13
137	Biochemistry-inspired direct synthesis of nitrogen and phosphorus dual-doped microporous carbon spheres for enhanced electrocatalysis. Chemical Communications, 2016, 52, 2118-2121.	2.2	58
138	Self‣upported Cobalt Phosphide Mesoporous Nanorod Arrays: A Flexible and Bifunctional Electrode for Highly Active Electrocatalytic Water Reduction and Oxidation. Advanced Functional Materials, 2015, 25, 7337-7347.	7.8	688
139	Direct Synthesis of Phosphorusâ€Doped Mesoporous Carbon Materials for Efficient Electrocatalytic Oxygen Reduction. ChemCatChem, 2015, 7, 2903-2909.	1.8	65
140	Metalâ€Free Carbonaceous Materials as Promising Heterogeneous Catalysts. ChemCatChem, 2015, 7, 2765-2787.	1.8	118
141	Water Electrolysis: Self-Supported Cobalt Phosphide Mesoporous Nanorod Arrays: A Flexible and Bifunctional Electrode for Highly Active Electrocatalytic Water Reduction and Oxidation (Adv. Funct.) Tj ETQq1 1	l 0 .7.8 4314	• rgBT /Overld
142	Insights into mesoporous metal phosphonate hybrid materials for catalysis. Catalysis Science and Technology, 2015, 5, 4258-4279.	2.1	68
143	Modification and Potential Applications of Organic–Inorganic Non-Siliceous Hybrid Materials. Springer Briefs in Molecular Science, 2015, , 75-118.	0.1	0
144	Ultrafine Metal Phosphide Nanocrystals <i>in Situ</i> Decorated on Highly Porous Heteroatom-Doped Carbons for Active Electrocatalytic Hydrogen Evolution. ACS Applied Materials & Interfaces, 2015, 7, 28369-28376.	4.0	72

#	Article	IF	CITATIONS
145	Ce-modified Ni nanoparticles encapsulated in SiO2 for CO -free hydrogen production via ammonia decomposition. International Journal of Hydrogen Energy, 2015, 40, 2648-2656.	3.8	42
146	History and Classification of Non-Siliceous Hybrid Materials. Springer Briefs in Molecular Science, 2015, , 7-23.	0.1	3
147	Co ²⁺ -loaded periodic mesoporous aluminum phosphonates for efficient modified Fenton catalysis. RSC Advances, 2015, 5, 7628-7636.	1.7	38
148	Mesoporous Phosphorus-Doped g-C ₃ N ₄ Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance. ACS Applied Materials & Interfaces, 2015, 7, 16850-16856.	4.0	635
149	Nitrogen-doped ordered cubic mesoporous carbons as metal-free counter electrodes for dye-sensitized solar cells. Journal of Power Sources, 2015, 283, 305-313.	4.0	41
150	Cobalt oxide and nitride particles supported on mesoporous carbons as composite electrocatalysts for dye-sensitized solar cells. Journal of Power Sources, 2015, 286, 82-90.	4.0	37
151	Catalytic abatement of CO and volatile organic compounds in waste gases by gold catalysts supported on ceria-modified mesoporous titania and zirconia. Chinese Journal of Catalysis, 2015, 36, 579-587.	6.9	15
152	Vanadium-doping of LiFePO4/carbon composite cathode materials synthesized with organophosphorus source. Electrochimica Acta, 2015, 167, 278-286.	2.6	47
153	Heteroatom-doped hierarchical porous carbons as high-performance metal-free oxygen reduction electrocatalysts. Journal of Materials Chemistry A, 2015, 3, 11725-11729.	5.2	79
154	Organophosphonic acid as precursor to prepare LiFePO4/carbon nanocomposites for high-power lithium ion batteries. Electrochimica Acta, 2015, 168, 59-68.	2.6	28
155	Nickle nanoparticles highly dispersed on reduced graphene oxide for ammonia decomposition to hydrogen. Journal of Industrial and Engineering Chemistry, 2015, 32, 373-379.	2.9	39
156	Mesoporous Organic-Inorganic Non-Siliceous Hybrid Materials. Springer Briefs in Molecular Science, 2015, , .	0.1	6
157	Strategies to Incorporate Mesoporosity. Springer Briefs in Molecular Science, 2015, , 25-59.	0.1	0
158	Ordered mesoporous carbon/graphene nano-sheets composites as counter electrodes in dye-sensitized solar cells. Journal of Power Sources, 2015, 274, 791-798.	4.0	29
159	Mesoporous zirconium phosphonate materials as efficient water-tolerable solid acid catalysts. Catalysis Science and Technology, 2015, 5, 1485-1494.	2.1	38
160	Mesoporous zirconium phosphonates as efficient catalysts for chemical CO ₂ fixation. Green Chemistry, 2015, 17, 795-798.	4.6	49
161	Morphological Design of Mesoporous Hybrid Materials. Springer Briefs in Molecular Science, 2015, , 61-73.	0.1	0
162	NaV2O5 crystals of a right-angle-shaped nanostructure assembly. CrystEngComm, 2014, 16, 11013-11017.	1.3	2

#	Article	IF	CITATIONS
163	Hierarchical Structures from Inorganic Nanocrystal Self-Assembly for Photoenergy Utilization. International Journal of Photoenergy, 2014, 2014, 1-15.	1.4	12
164	Highly dispersed photoactive zinc oxide nanoparticles on mesoporous phosphonated titania hybrid. Applied Catalysis B: Environmental, 2014, 156-157, 44-52.	10.8	39
165	Total oxidation of toluene over noble metal based Ce, Fe and Ni doped titanium oxides. Applied Catalysis B: Environmental, 2014, 146, 138-146.	10.8	69
166	Mesoporous modified-red-mud supported Ni catalysts for ammonia decomposition to hydrogen. International Journal of Hydrogen Energy, 2014, 39, 5747-5755.	3.8	57
167	Sonochemistry-assisted synthesis and optical properties of mesoporous ZnS nanomaterials. Journal of Materials Chemistry A, 2014, 2, 1093-1101.	5.2	81
168	Synthesis of amorphous porous zirconium phosphonate materials: tuneable from micropore to mesopore sizes. RSC Advances, 2014, 4, 32443-32450.	1.7	27
169	Direct synthesis of cobalt nanoparticle-imbedded mesoporous carbons for high-performance dye-sensitized solar cell counter electrodes. Journal of Materials Chemistry C, 2014, 2, 10312-10321.	2.7	40
170	Homogeneous precipitation method preparation of modified red mud supported Ni mesoporous catalysts for ammonia decomposition. Catalysis Science and Technology, 2014, 4, 361-368.	2.1	58
171	Hollow manganese phosphonate microspheres with hierarchical porosity for efficient adsorption and separation. Nanoscale, 2014, 6, 6627-6636.	2.8	63
172	In situ simultaneous reduction–doping route to synthesize hematite/N-doped graphene nanohybrids with excellent photoactivity. RSC Advances, 2014, 4, 31754-31758.	1.7	17
173	Mesoporous nickel phosphate/phosphonate hybrid microspheres with excellent performance for adsorption and catalysis. RSC Advances, 2014, 4, 16018-16021.	1.7	32
174	Mesoporous Cerium Phosphonate Nanostructured Hybrid Spheres as Label-Free Hg ²⁺ Fluorescent Probes. ACS Applied Materials & Interfaces, 2014, 6, 16344-16351.	4.0	47
175	Hierarchical porous carbons as a metal-free electrocatalyst of triiodide reduction for dye-sensitized solar cells. Journal of Power Sources, 2014, 272, 1091-1099.	4.0	25
176	Hollow cobalt phosphonate spherical hybrid as high-efficiency Fenton catalyst. Nanoscale, 2014, 6, 11395-11402.	2.8	66
177	Mesoporous non-siliceous inorganic–organic hybrids: a promising platform for designing multifunctional materials. New Journal of Chemistry, 2014, 38, 1905-1922.	1.4	48
178	Metal phosphonate hybrid materials: from densely layered to hierarchically nanoporous structures. Inorganic Chemistry Frontiers, 2014, 1, 360-383.	3.0	134
179	Mesoporous carbon counter electrode materials for dye-sensitized solar cells: The effect of structural mesopore ordering. Chemical Engineering Journal, 2014, 256, 23-31.	6.6	34
180	Mesoporous Ce Zr1â~'O2 solid solutions supported CuO nanocatalysts for toluene total oxidation. Journal of Industrial and Engineering Chemistry, 2014, 20, 3303-3312.	2.9	49

#	Article	IF	CITATIONS
181	Carbon-Doped ZnO Hybridized Homogeneously with Graphitic Carbon Nitride Nanocomposites for Photocatalysis. Journal of Physical Chemistry C, 2014, 118, 10963-10971.	1.5	259
182	Advances in Mesoporous Metal Phosphonate Hybrid Materials. Acta Chimica Sinica, 2014, 72, 521.	0.5	9
183	Mesoporous Ce1â^'x Mn x O2 mixed oxides with CuO loading for the catalytic total oxidation of propane. Reaction Kinetics, Mechanisms and Catalysis, 2013, 110, 405-420.	0.8	11
184	Mesoporous manganese oxide nanoparticles for the catalytic total oxidation of toluene. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108, 507-518.	0.8	30
185	Nanocrystal Assembly of Hierarchical Porous Architecture for Photocatalysis. , 2013, , 417-441.		1
186	Nitric acid oxidation of ordered mesoporous carbons for use in electrochemical supercapacitors. Journal of Solid State Electrochemistry, 2013, 17, 2223-2233.	1.2	33
187	Adsorption of Methylene Blue from Aqueous Solution by Periodic Mesoporous Titanium Phosphonate Materials. Adsorption Science and Technology, 2013, 31, 535-548.	1.5	18
188	Direct synthesis of ordered mesoporous carbons. Chemical Society Reviews, 2013, 42, 3977-4003.	18.7	530
189	Mesoporous phosphonate–TiO2 nanoparticles for simultaneous bioresponsive sensing and controlled drug release. Analyst, The, 2013, 138, 1084.	1.7	29
190	Adsorption of Cu2+ and methyl orange from aqueous solutions by activated carbons of corncob-derived char wastes. Environmental Science and Pollution Research, 2013, 20, 8521-8534.	2.7	49
191	Hierarchical mesoporous carbon materials: preparation by direct tri-constituent co-assembly and the electrochemical performance. Journal of Solid State Electrochemistry, 2013, 17, 927-935.	1.2	17
192	User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture. Journal of Materials Chemistry, 2012, 22, 15540.	6.7	130
193	Pore length control of mesoporous Co3O4and its influence on the capacity of porous electrodes for lithium-ion batteries. RSC Advances, 2012, 2, 1794-1797.	1.7	32
194	Synthesis and CO2 capture properties of mesoporous carbon nitride materials. Chemical Engineering Journal, 2012, 203, 63-70.	6.6	131
195	High-surface-area Ce0.8Zr0.2O2 solid solutions supported Ni catalysts for ammonia decomposition to hydrogen. International Journal of Hydrogen Energy, 2012, 37, 15901-15907.	3.8	63
196	Mesoporous SrTiO3 nanowires from a template-free hydrothermal process. RSC Advances, 2012, 2, 2790.	1.7	32
197	Synthesis of Mesoporous Zirconium Organophosphonate Solidâ€Acid Catalysts. European Journal of Inorganic Chemistry, 2012, 2012, 2661-2664.	1.0	41
198	Ordered Mesoporous Metal–Organic Frameworks Consisting of Metal Disulfonates. Chemistry of Materials, 2012, 24, 2253-2255.	3.2	75

#	Article	IF	CITATIONS
199	One-Dimensional Metal Oxide Nanotubes, Nanowires, Nanoribbons, and Nanorods: Synthesis, Characterizations, Properties and Applications. Critical Reviews in Solid State and Materials Sciences, 2012, 37, 1-74.	6.8	170
200	Synthesis of ordered mesoporous carbon materials and their catalytic performance in dehydrogenation of propane to propylene. Catalysis Today, 2012, 186, 35-41.	2.2	46
201	Promotional effect of CeOX for NO reduction over V2O5/TiO2-carbon nanotube composites. Journal of Molecular Catalysis A, 2012, 356, 121-127.	4.8	52
202	Gold catalysts supported on ceria-modified mesoporous zirconia for low-temperature water–gas shift reaction. Journal of Porous Materials, 2012, 19, 15-20.	1.3	15
203	Increasing the H+ exchange capacity of porous titanium phosphonate materials by protecting defective P–OH groups. Chemical Communications, 2011, 47, 6015.	2.2	26
204	Ordered mesoporous carbons: citric acid-catalyzed synthesis, nitrogen doping and CO2 capture. Journal of Materials Chemistry, 2011, 21, 16001.	6.7	146
205	Ordered mesoporous carbon catalyst for dehydrogenation of propane to propylene. Chemical Communications, 2011, 47, 8334.	2.2	86
206	Investigation of the GeO2-1,6-Diaminohexane-Water-Pyridine-HF Phase Diagram Leading to the Discovery of Two Novel Layered Germanates with Extra-Large Rings. Inorganic Chemistry, 2011, 50, 201-207.	1.9	29
207	Relationship between the reducibility and selectivity of CeMox V1-xO4 catalysts by kinetic parameters of TPR. Journal of Natural Gas Chemistry, 2011, 20, 232-236.	1.8	1
208	Synthesis of porous hematite nanorods loaded with CuO nanocrystals as catalysts for CO oxidation. Journal of Natural Gas Chemistry, 2011, 20, 669-676.	1.8	29
209	HNO3-activated mesoporous carbon catalyst for direct dehydrogenation of propane to propylene. Catalysis Communications, 2011, 16, 81-85.	1.6	59
210	Exotemplating synthesis of nitrogen-doped carbon materials with hierarchically porous structure and their application for lysozyme adsorption. Chemical Engineering Journal, 2011, 174, 452-460.	6.6	11
211	Hierarchical mesostructured titanium phosphonates with unusual uniform lines of macropores. Nanoscale, 2011, 3, 1690.	2.8	24
212	Catalytic oxidation of CO and toluene over nanostructured mesoporous NiO/Ce0.8Zr0.2O2 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103, 101-112.	0.8	16
213	Titania–silica–phosphonate triconstituent hybrid mesoporous materials as adsorbents in gas and liquid phases. Chemical Engineering Journal, 2011, 166, 1144-1151.	6.6	35
214	Ordered, Mesoporous Metal Phosphonate Materials with Microporous Crystalline Walls for Selective Separation Techniques. Small, 2011, 7, 1827-1837.	5.2	67
215	Metal Phosphonate Hybrid Mesostructures: Environmentally Friendly Multifunctional Materials for Clean Energy and Other Applications. ChemSusChem, 2011, 4, 1407-1419.	3.6	101
216	Zirconium ribonucleotide surface-functionalized mesoporous SBA-15 materials with high capacity of CO2 capture. Chemical Engineering Journal, 2011, 171, 368-372.	6.6	10

#	Article	IF	CITATIONS
217	Gold and CuO nanocatalysts supported on hierarchical structured Ce-doped titanias for low temperature CO oxidation. Studies in Surface Science and Catalysis, 2010, , 575-579.	1.5	2
218	High surface area titanium phosphonate materials with hierarchical porosity for multi-phase adsorption. New Journal of Chemistry, 2010, 34, 1209.	1.4	60
219	Hydrangeaâ€Like Meso″Macroporous ZnOâ€CeO ₂ Binary Oxide Materials: Synthesis, Photocatalysis and CO Oxidation. European Journal of Inorganic Chemistry, 2010, 2010, 716-724.	1.0	71
220	Organicâ€Additiveâ€Assisted Synthesis of Hierarchically Meso″Macroporous Titanium Phosphonates. European Journal of Inorganic Chemistry, 2010, 2010, 2941-2948.	1.0	22
221	Cubic Mesoporous Titanium Phosphonates with Multifunctionality. Chemistry - A European Journal, 2010, 16, 8487-8494.	1.7	59
222	Synthesis and characterization of carbon-modified titania photocatalysts with a hierarchical meso-/macroporous structure. Chemical Engineering Journal, 2010, 160, 370-377.	6.6	37
223	A low-temperature autoclaving route to synthesize monolithic carbon materials with an ordered mesostructure. Carbon, 2010, 48, 2089-2099.	5.4	75
224	Synthesis of ultra-large mesoporous carbons from triblock copolymers and phloroglucinol/formaldehyde polymer. Carbon, 2010, 48, 2660-2664.	5.4	33
225	Titanium oxide nanotubes as supports of Au or Pd nano-sized catalysts for total oxidation of VOCs. Studies in Surface Science and Catalysis, 2010, 175, 743-746.	1.5	8
226	Nanostructured Co ₃ O ₄ Materials: Synthesis, Characterization, and Electrochemical Behaviors as Anode Reactants in Rechargeable Lithium Ion Batteries. Journal of Physical Chemistry C, 2010, 114, 12805-12817.	1.5	105
227	Periodic mesoporous titanium phosphonate hybrid materials. Journal of Materials Chemistry, 2010, 20, 7406.	6.7	64
228	Periodic mesoporous titanium phosphonate spheres for high dispersion of CuO nanoparticles. Dalton Transactions, 2010, 39, 9570.	1.6	35
229	Mesoporous CuO-Fe2O3 composite catalysts for complete n-hexane oxidation. Studies in Surface Science and Catalysis, 2010, , 547-550.	1.5	4
230	Hexagonal Mesoporous Titanium Tetrasulfonates with Large Conjugated Hybrid Framework for Photoelectric Conversion. ACS Applied Materials & Interfaces, 2010, 2, 3563-3571.	4.0	26
231	Hierarchical meso-/macroporous phosphated and phosphonated titania nanocomposite materials with high photocatalytic activity. Studies in Surface Science and Catalysis, 2010, 175, 571-574.	1.5	1
232	Functionalized periodic mesoporous titanium phosphonate monoliths with large ion exchange capacity. Chemical Communications, 2010, 46, 2325.	2.2	56
233	Low-Temperature CO Oxidation over Pd/SAPO-34 Catalyst. Chinese Journal of Catalysis, 2010, 31, 322-328.	6.9	2
234	Gold nanoparticles supported on ceria-modified mesoporous–macroporous binary metal oxides as highly active catalysts for low-temperature water–gas shift reaction. Journal of Materials Science, 2009, 44, 6637-6643.	1.7	22

#	Article	IF	CITATIONS
235	High selectivity for metal ion adsorption: from mesoporous phosphonated titanias to meso-/macroporous titanium phosphonates. Journal of Materials Science, 2009, 44, 6775-6785.	1.7	28
236	Mesoporous Ce0.8Zr0.2O2 solid solutions-supported CuO nanocatalysts for CO oxidation: a comparative study of preparation methods. Journal of Materials Science, 2009, 44, 6663-6669.	1.7	28
237	Hierarchical meso–macroporous titania-supported CuO nanocatalysts: preparation, characterization and catalytic CO oxidation. Journal of Materials Science, 2009, 44, 6717-6726.	1.7	54
238	Phosphorus and nitrogen co-doped titania photocatalysts with a hierarchical meso-/macroporous structure. Journal of Materials Science, 2009, 44, 6754-6763.	1.7	41
239	A simple method to prepare titania nanomaterials of core-shell structure, hollow nanospheres and mesoporous nanoparticles. Science in China Series B: Chemistry, 2009, 52, 1498-1503.	0.8	8
240	Hierarchically meso-/macroporous titanium tetraphosphonate materials: Synthesis, photocatalytic activity and heavy metal ion adsorption. Microporous and Mesoporous Materials, 2009, 123, 234-242.	2.2	70
241	Porous ceria hollow microspheres: Synthesis and characterization. Microporous and Mesoporous Materials, 2009, 123, 349-353.	2.2	56
242	Hierarchical mesoporous phosphorus and nitrogen doped titania materials: Synthesis, characterization and visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2009, 92, 61-67.	10.8	82
243	Hierarchically Structured Squama-like Cerium-Doped Titania: Synthesis, Photoactivity, and Catalytic CO Oxidation. Journal of Physical Chemistry C, 2009, 113, 16658-16667.	1.5	59
244	Hierarchical Meso-/Macroporous Aluminum Phosphonate Hybrid Materials as Multifunctional Adsorbents. Journal of Physical Chemistry C, 2009, 113, 12854-12862.	1.5	90
245	Synthesis of transition metal oxide nanoparticles with ultrahigh oxygen adsorption capacity and efficient catalytic oxidation performance. Journal of Materials Chemistry, 2009, 19, 6097.	6.7	39
246	Comparative Study on Catalytic Performances for Low-temperature CO Oxidation of Cu–Ce–O and Cu–Co–Ce–O Catalysts. Catalysis Letters, 2008, 124, 405-412.	1.4	25
247	Nanostructured Titania–Diphosphonate Hybrid Materials with a Porous Hierarchy. European Journal of Inorganic Chemistry, 2008, 2008, 2721-2726.	1.0	43
248	Massâ€Productions of Vertically Aligned Extremely Long Metallic Micro/Nanowires Using Fiber Drawing Nanomanufacturing. Advanced Materials, 2008, 20, 1310-1314.	11.1	39
249	Single crystal manganese oxide hexagonal plates with regulated mesoporous structures. Microporous and Mesoporous Materials, 2008, 112, 467-473.	2.2	41
250	Preparation, characterization and catalytic behavior of nanostructured mesoporous CuO/Ce0.8Zr0.2O2 catalysts for low-temperature CO oxidation. Applied Catalysis B: Environmental, 2008, 78, 120-128.	10.8	177
251	Mesoporous and nanostructured CeO2 as supports of nano-sized gold catalysts for low-temperature water-gas shift reaction. Catalysis Today, 2008, 131, 203-210.	2.2	86
252	Synthesis of MCM-22 zeolite by an ultrasonic-assisted aging procedure. Ultrasonics Sonochemistry, 2008, 15, 334-338.	3.8	62

#	Article	IF	CITATIONS
253	Mesoporous CuO–Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation. Applied Catalysis B: Environmental, 2008, 79, 26-34.	10.8	200
254	Preparation and photocatalytic activity of hierarchically mesoporous-macroporous TiO2â^'xNx. Applied Catalysis B: Environmental, 2008, 82, 208-218.	10.8	140
255	Low temperature effect on the morphological control of mesoporous silica nanofibers at near-neutral pH: A biomimetic strategy. Microporous and Mesoporous Materials, 2008, 109, 233-238.	2.2	9
256	Polyvinylalcohol (PVA) induced wormhole-like mesoporous silica nano-fibers. Materials Letters, 2008, 62, 711-714.	1.3	13
257	CuO catalysts supported on attapulgite clay for low-temperature CO oxidation. Catalysis Communications, 2008, 9, 2555-2559.	1.6	159
258	Titania–phosphonate hybrid porous materials: preparation, photocatalytic activity and heavy metal ion adsorption. Journal of Materials Chemistry, 2008, 18, 2003.	6.7	109
259	Synthesis of B-Beta zeolite and its modification with orthophosphoric acid. Studies in Surface Science and Catalysis, 2008, 174, 209-212.	1.5	2
260	Ordered Macroporous Titanium Phosphonate Materials:  Synthesis, Photocatalytic Activity, and Heavy Metal Ion Adsorption. Journal of Physical Chemistry C, 2008, 112, 3090-3096.	1.5	96
261	Systematic Investigation on Morphologies, Forming Mechanism, Photocatalytic and Photoluminescent Properties of ZnO Nanostructures Constructed in Ionic Liquids. Inorganic Chemistry, 2008, 47, 1443-1452.	1.9	193
262	TEM study of regulated mesoporous Mn2O3 hexagonal nanoplates. Studies in Surface Science and Catalysis, 2008, , 997-1000.	1.5	0
263	Synthesis of Hierarchically Meso-/Macroporous Titanium Tetraphosphonate Materials with Large Adsorption Capacity of Heavy Metal Ions. Chemistry Letters, 2008, 37, 746-747.	0.7	19
264	Synthesis of supermicro-macroporous silica with polypeptide-based triblock copolymer. Studies in Surface Science and Catalysis, 2007, , 33-36.	1.5	0
265	Synthesis of silica nanostructures using synthetic block copolypeptide. Studies in Surface Science and Catalysis, 2007, 165, 37-40.	1.5	1
266	Facile synthesis of hierarchically structured titanium phosphate with bimodal wormhole-like mesopores and macropores. Studies in Surface Science and Catalysis, 2007, 165, 271-274.	1.5	0
267	Chiral mesoporous silica tubules by achiral surfactant template. Studies in Surface Science and Catalysis, 2007, 165, 547-549.	1.5	0
268	Control of pore size of mesoporous silica utilizing noncovalent supermicelles. Studies in Surface Science and Catalysis, 2007, , 29-32.	1.5	1
269	Template-free synthesis of hierarchical mesoporous alumina-based materials with uniform channel-like macrostructures. Studies in Surface Science and Catalysis, 2007, , 287-290.	1.5	7
270	Hierarchically Assembled Porous ZnO Nanoparticles:  Synthesis, Surface Energy, and Photocatalytic Activity. Chemistry of Materials, 2007, 19, 5680-5686.	3.2	220

#	Article	IF	CITATIONS
271	Crystal growth of mixed-valence ammonium vanadates. Crystal Research and Technology, 2007, 42, 317-320.	0.6	29
272	Direct blue dye-encapsulated mesostructured MCM-41 composites: Microwave-assisted preparation and characterization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300, 88-93.	2.3	13
273	Encapsulation of direct blue dye into mesoporous silica-based materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300, 79-87.	2.3	31
274	Self-formation of hierarchical micro-meso-macroporous structures: Generation of the new concept "Hierarchical Catalysis― Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300, 70-78.	2.3	95
275	Na2EDTA: Trifunctional controller for formation of tubular mesoporous silica at circumneutral pH and low temperature. Microporous and Mesoporous Materials, 2007, 103, 257-264.	2.2	4
276	Facile template-free synthesis of meso-macroporous titanium phosphate with hierarchical pore structure. Microporous and Mesoporous Materials, 2007, 100, 139-145.	2.2	29
277	Selective synthesis of borated meso-macroporous and mesoporous spherical TiO2 with high photocatalytic activity. Microporous and Mesoporous Materials, 2007, 102, 318-324.	2.2	48
278	Observation of hollow helical fibers of MCM-41. Materials Letters, 2007, 61, 4492-4495.	1.3	9
279	Morphological evolution of PbS crystals under the control of I-lysine at different pH values: The ionization effect of the amino acid. Solid State Sciences, 2007, 9, 725-731.	1.5	19
280	Syntheses of CuO nanostructures in ionic liquids. Science in China Series B: Chemistry, 2007, 50, 63-69.	0.8	16
281	Gold nanoparticles supported on ceria-modified mesoporous titania as highly active catalysts for low-temperature water-gas shift reaction. Catalysis Today, 2007, 128, 223-229.	2.2	52
282	Simple approach to highly oriented ZnO nanowire arrays: large-scale growth, photoluminescence and photocatalytic properties. Nanotechnology, 2006, 17, 588-594.	1.3	96
283	Self-Assembly of Hierarchically Mesoporousâ^'Macroporous Phosphated Nanocrystalline Aluminum (Oxyhydr)oxide Materials. Chemistry of Materials, 2006, 18, 1753-1767.	3.2	81
284	Synthesis and Characterization of Mesoporous Ceria with Hierarchical Nanoarchitecture Controlled by Amino Acids. Journal of Physical Chemistry B, 2006, 110, 25782-25790.	1.2	133
285	Insights into hierarchically meso–macroporous structured materials. Journal of Materials Chemistry, 2006, 16, 663-677.	6.7	520
286	Flowerlike ZnO nanocones and nanowires: Preparation, structure, and luminescence. Applied Physics Letters, 2006, 88, 243101.	1.5	74
287	Tailoring the Porous Hierarchy of Titanium Phosphates. Langmuir, 2006, 22, 3886-3894.	1.6	88
288	A low-temperature aqueous solution route to large-scale growth of ZnO nanowire arrays. Journal of Non-Crystalline Solids, 2006, 352, 2569-2574.	1.5	22

#	Article	IF	CITATIONS
289	New Pd/hierarchical macro-mesoporous ZrO2, TiO2 and ZrO2-TiO2 catalysts for VOCs total oxidation. Applied Catalysis A: General, 2006, 310, 61-69.	2.2	120
290	Designed formation of the stable adduct InP/CTAB/Clay. Journal of Crystal Growth, 2006, 289, 395-399.	0.7	0
291	Synthesis of mesoporous aluminophosphate and silicoaluminophosphate in the presence of nonionic poly(ethylene oxide) surfactant. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 131, 263-266.	1.7	6
292	Hierarchically helical mesostructured silica nanofibers templated by achiral cationic surfactant. Journal of Materials Chemistry, 2006, 16, 4117.	6.7	57
293	High-yield synthesis of single-crystalline ZnO hexagonal nanoplates and accounts of their optical and photocatalytic properties. Applied Physics A: Materials Science and Processing, 2006, 86, 181-185.	1.1	65
294	Synthesis of nanoporous silica with interior composite cells with synthetic block copolypeptide as template. Science Bulletin, 2006, 51, 493-497.	1.7	5
295	Gold catalysts supported on mesoporous zirconia for low-temperature water–gas shift reaction. Applied Catalysis B: Environmental, 2006, 63, 178-186.	10.8	136
296	Budded, Mesoporous Silica Hollow Spheres: Hierarchical Structure Controlled by Kinetic Self-Assembly. Advanced Materials, 2006, 18, 3284-3288.	11.1	156
297	Facile preparation of nanostructured manganese oxides by hydrotreatment of commercial particles. Studies in Surface Science and Catalysis, 2006, 162, 425-432.	1.5	3
298	Hydrothermal Synthesis and Formation Mechanism of Micrometer-sized MoO2 Hollow Spheres. Chinese Journal of Chemical Physics, 2006, 19, 543-548.	0.6	28
299	Marvelous self-assembly of hierarchically nanostructured porous zirconium phosphate solid acids with high thermal stability. Catalysis Today, 2005, 105, 647-654.	2.2	65
300	Titanium oxide nanotubes as supports of nano-sized gold catalysts for low temperature water-gas shift reaction. Applied Catalysis A: General, 2005, 281, 149-155.	2.2	194
301	Highly ordered mesoporous CMI-n materials and hierarchically structured meso–macroporous compositions. Comptes Rendus Chimie, 2005, 8, 713-726.	0.2	31
302	Synthesis of amorphous supermicroporous zirconium phosphate materials by nonionic surfactant templating. Materials Research Bulletin, 2005, 40, 1922-1928.	2.7	27
303	Facile preparation of single-crystalline nanowires of γMnOOH and βMnO2. Applied Physics A: Materials Science and Processing, 2005, 80, 743-747.	1.1	29
304	Transmission electron microscopy and electron energy-loss spectroscopy analysis of manganese oxide nanowires. Applied Physics Letters, 2005, 86, 063113.	1.5	51
305	Exfoliation of Organo-Clay in Telechelic Liquid Polybutadiene Rubber. Macromolecules, 2005, 38, 4030-4033.	2.2	49
306	Surfactant-Assisted Large-Scale Preparation of Crystalline CeO2Nanorods. Langmuir, 2005, 21, 1132-1135.	1.6	220

#	Article	IF	CITATIONS
307	Rubber/exfoliated-clay nano-composite gel: Direct exfolia-tion of montmorillonite by telechelic liquid rubber. Science Bulletin, 2004, 49, 1664.	1.7	1
308	One-pot synthesis of a high-surface-area zirconium oxide material with hierarchically three-length-scaled pore structure. New Journal of Chemistry, 2004, 28, 1083.	1.4	47
309	Thermally stable macroporous zirconium phosphates with supermicroporous walls: a self-formation phenomenon of hierarchy. Chemical Communications, 2004, , 2730.	2.2	78
310	Surfactant mediated nanoparticle assembly of catalytic mesoporous crystalline iron oxide materials. Catalysis Today, 2004, 93-95, 743-750.	2.2	46
311	Moderate hydrothermal synthesis of potassium titanate nanowires. Applied Physics A: Materials Science and Processing, 2004, 78, 1063-1066.	1.1	56
312	Gold catalysts supported on mesoporous titania for low-temperature water–gas shift reaction. Applied Catalysis A: General, 2004, 270, 135-141.	2.2	132
313	Characterization of pore systems of mesoporous silicas templated by cetylpyridinium under mild-alkaline condition: the effect of low-temperature ammonia post-treatment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241, 95-102.	2.3	8
314	Titanium oxide nanotubes, nanofibers and nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241, 173-183.	2.3	461
315	A novel macroporous structure of mesoporous titanias: synthesis and characterisation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 241, 67-73.	2.3	30
316	CO2-induced micro-construction of hierarchical strings of mesoporous silica spheroids. Chemical Physics Letters, 2004, 383, 348-352.	1.2	9
317	Hierarchical microtubular nanoporous zirconia with an extremely high surface area and pore volume. Chemical Physics Letters, 2004, 388, 46-49.	1.2	25
318	A facile preparation of single-crystalline α-Mn2O3 nanorods by ammonia-hydrothermal treatment of MnO2. Chemical Physics Letters, 2004, 389, 83-86.	1.2	43
319	Comment on Spontaneously Ordered Solâ^ Gel Composites with Submicrometer Periodicity. Chemistry of Materials, 2004, 16, 195-195.	3.2	2
320	Facile and Generalized Preparation of Hierarchically Mesoporousâ^'Macroporous Binary Metal Oxide Materials. Chemistry of Materials, 2004, 16, 5096-5106.	3.2	130
321	Microwave-Assisted Preparation of Hierarchical Mesoporousâ^'Macroporous Boehmite AlOOH and γ-Al2O3. Langmuir, 2004, 20, 1531-1534.	1.6	130
322	An inherent macroperiodic assembly or an artificial beauty?. Studies in Surface Science and Catalysis, 2004, 154, 1525-1531.	1.5	1
323	Synthesis and characterization of manganese-modified MCM-41. Materials Chemistry and Physics, 2003, 77, 299-303.	2.0	15
324	Hierarchically Mesostructured Titania Materials with an Unusual Interior Macroporous Structure. Advanced Materials, 2003, 15, 1462-1465.	11.1	130

#	Article	IF	CITATIONS
325	Title is missing!. Angewandte Chemie, 2003, 115, 2978-2981.	1.6	41
326	Do Mesostructured Materials Have an Unusual Macrolamellar Structure?. Angewandte Chemie, 2003, 115, 1610-1611.	1.6	1
327	Hierarchically Mesoporous/Macroporous Metal Oxides Templated from Polyethylene Oxide Surfactant Assemblies. Angewandte Chemie - International Edition, 2003, 42, 2872-2875.	7.2	215
328	Do Mesostructured Materials Have an Unusual Macrolamellar Structure?. Angewandte Chemie - International Edition, 2003, 42, 1572-1573.	7.2	7
329	Surfactant-assisted nanoparticle assembly of mesoporous β-FeOOH (akaganeite). Chemical Physics Letters, 2003, 381, 710-714.	1.2	76
330	Surfactant-assisted preparation of hollow microspheres of mesoporous TiO2. Chemical Physics Letters, 2003, 374, 170-175.	1.2	179
331	A simple method to synthesise single-crystalline manganese oxide nanowires. Chemical Physics Letters, 2003, 378, 349-353.	1.2	133
332	Electron beam irradiation effect on nanostructured molecular sieve catalysts. Journal of Electron Spectroscopy and Related Phenomena, 2003, 129, 189-194.	0.8	17
333	Using Trimethylphosphine as a Probe Molecule to Study the Acid Sites in Alâ^'MCM-41 Materials by Solid-State NMR Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 2435-2442.	1.2	72
334	A simple method for coating carbon nanotubes with Co–B amorphous alloy. Materials Letters, 2003, 57, 1339-1344.	1.3	46
335	Surfactant-assisted synthesis of unprecedented hierarchical meso-macrostructured zirconia. Chemical Communications, 2003, , 1558-1559.	2.2	83
336	Direct and post- hydrothermal treatments in ammoniated solution for the morphogenesis of mesoporous silica nanotubes. Studies in Surface Science and Catalysis, 2003, 146, 181-184.	1.5	0
337	Comprehensive characterization of iron oxide containing mesoporous molecular sieve MCM-41. Studies in Surface Science and Catalysis, 2002, , 403-410.	1.5	8
338	Mesoporous silicas of hierarchical structure by hydrothermal surfactant-templating under mild alkali conditions. Studies in Surface Science and Catalysis, 2002, 141, 133-140.	1.5	3
339	Morphosynthesis of Vesicular Mesostructured Calcium Phosphate under Electron Irradiation. Langmuir, 2002, 18, 2450-2452.	1.6	35
340	Design of bimodal mesoporous silicas with interconnected pore systems by ammonia post-hydrothermal treatment in the mild-temperature range. Chemical Communications, 2002, , 504-505.	2.2	67
341	Hierarchical interlinked structure of titanium oxide nanofibers. Chemical Communications, 2002, , 1202-1203.	2.2	67
342	Transition metal ion-induced morphogenesis of mesoporous molecular sieve MCM-41. Chemical Physics Letters, 2002, 361, 307-311.	1.2	6

#	Article	IF	CITATIONS
343	Titanium oxide nanoribbons. Chemical Physics Letters, 2002, 363, 362-366.	1.2	87
344	Preparation and structure analysis of titanium oxide nanotubes. Applied Physics Letters, 2001, 79, 3702-3704.	1.5	553
345	Co/carbon-nanotube monometallic system: the effects of oxidation by nitric acid. Physical Chemistry Chemical Physics, 2001, 3, 2518-2521.	1.3	54
346	Synthesis and characterization of boron-containing MCM-48 cubic mesoporous molecular sieves. Microporous and Mesoporous Materials, 2001, 42, 289-297.	2.2	27
347	Vanadium- and chromium-containing mesoporous MCM-41 molecular sieves with hierarchical structure. Microporous and Mesoporous Materials, 2001, 43, 227-236.	2.2	20
348	Synthesis and characterization of silicon and cobalt substituted mesoporous aluminophosphates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 179, 253-259.	2.3	15
349	Morphogenesis of surface patterns and incorporation of redox-active metals in mesoporous silicate molecular sieves. Surface and Interface Analysis, 2001, 32, 193-197.	0.8	11
350	Temperature-programmed surface reaction study on C2-oxygenate synthesis over SiO2 and nanoporous zeolitic material supported Rh-Mn catalysts. Surface and Interface Analysis, 2001, 32, 224-227.	0.8	24
351	A novel morphology of mesoporous molecular sieve MCM-41. Chemical Physics Letters, 2001, 333, 427-431.	1.2	43
352	Title is missing!. Catalysis Letters, 2001, 72, 203-206.	1.4	57
353	Synthesis of mesostructured lamellar aluminophosphates in the presence of alkylpyridinium cationic surfactant. Materials Chemistry and Physics, 2001, 68, 110-118.	2.0	11
354	Synthesis of Microporous Silica in the Presence of Dodecyldimethylbenzylammonium Chloride Surfactant. Chemistry Letters, 2000, 29, 1150-1151.	0.7	5
355	Partitioning of aluminum atoms in crystallographically non-equivalent tetrahedral sites of the zeolite offretite by 29Si MAS NMR. Chemical Physics Letters, 1996, 252, 375-378.	1.2	2
356	Lewis acid sites on dehydroxylated zeolite HZSM-5 studied by NMR and EPR. Catalysis Today, 1996, 30, 189-192.	2.2	21
357	Synthesis of iron-containing MCM-41. Journal of the Chemical Society Chemical Communications, 1995, , 973.	2.0	140
358	Synthesis and Photocatalytic Performance of Hierarchical Porous Titanium Phosphonate Hybrid Materials. Advanced Materials Research, 0, 132, 87-95.	0.3	2