List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4210768/publications.pdf Version: 2024-02-01

DALLI M YEN

#	Article	IF	CITATIONS
1	Physiological and Molecular Basis of Thyroid Hormone Action. Physiological Reviews, 2001, 81, 1097-1142.	13.1	1,674
2	Direct effects of thyroid hormones on hepatic lipid metabolism. Nature Reviews Endocrinology, 2018, 14, 259-269.	4.3	357
3	Thyroid Hormone Regulation of Hepatic Genes in Vivo Detected by Complementary DNA Microarray. Molecular Endocrinology, 2000, 14, 947-955.	3.7	303
4	Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology, 2014, 59, 1366-1380.	3.6	285
5	Dynamic Exchange at Regulatory Elements during Chromatin Remodeling Underlies Assisted Loading Mechanism. Cell, 2011, 146, 544-554.	13.5	282
6	Thyroid hormone stimulates hepatic lipid catabolism via activation of autophagy. Journal of Clinical Investigation, 2012, 122, 2428-2438.	3.9	211
7	New insights into thyroid hormone action. Best Practice and Research in Clinical Endocrinology and Metabolism, 2007, 21, 193-208.	2.2	208
8	Thyroid hormone action at the cellular, genomic and target gene levels. Molecular and Cellular Endocrinology, 2006, 246, 121-127.	1.6	196
9	Expression and Hormonal Regulation of Coactivator and Corepressor Genes. Endocrinology, 1998, 139, 2493-2500.	1.4	194
10	Inhibiting Interleukin 11 Signaling Reduces Hepatocyte Death and Liver Fibrosis, Inflammation, and Steatosis in Mouse Models of Nonalcoholic Steatohepatitis. Gastroenterology, 2019, 157, 777-792.e14.	0.6	183
11	Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends in Endocrinology and Metabolism, 2014, 25, 538-545.	3.1	167
12	Dynamic Shuttling and Intranuclear Mobility of Nuclear Hormone Receptors. Journal of Biological Chemistry, 2003, 278, 12425-12432.	1.6	156
13	Comparative Analysis of Small Molecules and Histone Substrate Analogues as LSD1 Lysine Demethylase Inhibitors. Journal of the American Chemical Society, 2010, 132, 3164-3176.	6.6	149
14	Nonalcoholic Fatty Liver Disease and Hypercholesterolemia: Roles of Thyroid Hormones, Metabolites, and Agonists. Thyroid, 2019, 29, 1173-1191.	2.4	148
15	Thyroid hormone induction of mitochondrial activity is coupled to mitophagy via ROS-AMPK-ULK1 signaling. Autophagy, 2015, 11, 1341-1357.	4.3	139
16	Thyroid hormone (T ₃) stimulates brown adipose tissue activation via mitochondrial biogenesis and MTOR-mediated mitophagy. Autophagy, 2019, 15, 131-150.	4.3	137
17	Thyroid Hormone Signaling Pathways: Time for a More Precise Nomenclature. Endocrinology, 2017, 158, 2052-2057.	1.4	134
18	Epigallocatechin-3-Gallate (EGCG), a Green Tea Polyphenol, Stimulates Hepatic Autophagy and Lipid Clearance. PLoS ONE, 2014, 9, e87161.	1.1	132

#	Article	IF	CITATIONS
19	New advances in understanding the molecular mechanisms of thyroid hormone action. Trends in Endocrinology and Metabolism, 1994, 5, 65-72.	3.1	129
20	Nuclear Cytoplasmic Shuttling by Thyroid Hormone Receptors. Journal of Biological Chemistry, 2001, 276, 11237-11245.	1.6	128
21	Role of the Asialoglycoprotein Receptor in Binding and Entry of Hepatitis C Virus Structural Proteins in Cultured Human Hepatocytes. Journal of Virology, 2003, 77, 546-559.	1.5	121
22	Molecular basis of resistance to thyroid hormone. Trends in Endocrinology and Metabolism, 2003, 14, 327-333.	3.1	120
23	Effects of ligand and thyroid hormone receptor isoforms on hepatic gene expression profiles of thyroid hormone receptor knockout mice. EMBO Reports, 2003, 4, 581-587.	2.0	110
24	Changes in macroautophagy, chaperone-mediated autophagy, and mitochondrial metabolism in murine skeletal and cardiac muscle during aging. Aging, 2017, 9, 583-599.	1.4	102
25	Somatic Mutation of TRβ Can Cause a Defect in Negative Regulation of TSH in a TSH-Secreting Pituitary Tumor. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 5572-5576.	1.8	91
26	Aberrant Alternative Splicing of Thyroid Hormone Receptor in a TSH-Secreting Pituitary Tumor Is A Mechanism for Hormone Resistance. Molecular Endocrinology, 2001, 15, 1529-1538.	3.7	91
27	The Glucocorticoid Receptor Interacting Protein 1 (GRIP1) Localizes in Discrete Nuclear Foci That Associate with ND10 Bodies and Are Enriched in Components of the 26S Proteasome. Molecular Endocrinology, 2001, 15, 485-500.	3.7	90
28	Induction of autophagy improves hepatic lipid metabolism in glucose-6-phosphatase deficiency. Journal of Hepatology, 2016, 64, 370-379.	1.8	84
29	Retention of pendrin in the endoplasmic reticulum is a major mechanism for Pendred syndrome. Human Molecular Genetics, 2002, 11, 2625-2633.	1.4	83
30	Thyroid hormone receptor and ERRα coordinately regulate mitochondrial fission, mitophagy, biogenesis, and function. Science Signaling, 2018, 11, .	1.6	80
31	Thyroid Hormone Stimulation of Autophagy Is Essential for Mitochondrial Biogenesis and Activity in Skeletal Muscle. Endocrinology, 2016, 157, 23-38.	1.4	70
32	Low-Dose Levothyroxine Reduces Intrahepatic Lipid Content in Patients With Type 2 Diabetes Mellitus and NAFLD. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 2698-2706.	1.8	70
33	Thyroid Hormone Response Elements Differentially Modulate the Interactions of Thyroid Hormone Receptors with Two Receptor Binding Domains in the Steroid Receptor Coactivator-1. Journal of Biological Chemistry, 1998, 273, 21554-21562.	1.6	62
34	Classification and Proposed Nomenclature for Inherited Defects of Thyroid Hormone Action, Cell Transport, and Metabolism*. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 768-770.	1.8	62
35	Thermogenesis in Adipose Tissue Activated by Thyroid Hormone. International Journal of Molecular Sciences, 2020, 21, 3020.	1.8	62
36	Microarray analysis of knockout mice identifies cyclin D2 as a possible mediator for the action of thyroid hormone during the postnatal development of the cerebellum. Developmental Biology, 2003, 254, 188-199.	0.9	61

#	Article	IF	CITATIONS
37	Thyroid Hormone-Regulated Target Genes Have Distinct Patterns of Coactivator Recruitment and Histone Acetylation. Molecular Endocrinology, 2006, 20, 483-490.	3.7	60
38	Region-Specific Antiglucocorticoid Receptor Antibodies Selectively Recognize the Activated Form of the Ligand-Occupied Receptor and Inhibit the Binding of Activated Complexes to Deoxyribonucleic Acid. Molecular Endocrinology, 1989, 3, 251-260.	3.7	55
39	Interactions of Estrogen- and Thyroid Hormone Receptors on a Progesterone Receptor Estrogen Response Element (ERE) Sequence: a Comparison with the Vitellogenin A2 Consensus ERE. Molecular Endocrinology, 1997, 11, 1581-1592.	3.7	54
40	Hyperhomocysteinemia causes ER stress and impaired autophagy that is reversed by Vitamin B supplementation. Cell Death and Disease, 2016, 7, e2513-e2513.	2.7	54
41	Vitamin D Receptors Repress Basal Transcription and Exert Dominant Negative Activity on Triiodothyronine-mediated Transcriptional Activity. Journal of Biological Chemistry, 1996, 271, 10910-10916.	1.6	52
42	Lack of Coactivator Interaction Can Be a Mechanism for Dominant Negative Activity by Mutant Thyroid Hormone Receptors**This work was supported by the March of Dimes Foundation Endocrinology, 1998, 139, 4197-4204.	1.4	50
43	Transgenic Targeting of a Dominant Negative Corepressor to Liver Blocks Basal Repression by Thyroid Hormone Receptor and Increases Cell Proliferation. Journal of Biological Chemistry, 2001, 276, 15066-15072.	1.6	49
44	Thyroid hormone-mediated autophagy and mitochondrial turnover in NAFLD. Cell and Bioscience, 2016, 6, 46.	2.1	49
45	PD-linked CHCHD2 mutations impair CHCHD10 and MICOS complex leading to mitochondria dysfunction. Human Molecular Genetics, 2019, 28, 1100-1116.	1.4	48
46	Estrogen-Related Receptor Alpha: An Under-Appreciated Potential Target for the Treatment of Metabolic Diseases. International Journal of Molecular Sciences, 2020, 21, 1645.	1.8	48
47	FoxO1 Deacetylation Regulates Thyroid Hormone-induced Transcription of Key Hepatic Gluconeogenic Genes. Journal of Biological Chemistry, 2013, 288, 30365-30372.	1.6	47
48	RORα Augments Thyroid Hormone Receptor-Mediated Transcriptional Activation*. Endocrinology, 1999, 140, 1356-1364.	1.4	46
49	Classification and Proposed Nomenclature for Inherited Defects of Thyroid Hormone Action, Cell Transport, and Metabolism. Thyroid, 2014, 24, 407-409.	2.4	46
50	Protein synthesis inhibitors and the chemical chaperone TMAO reverse endoplasmic reticulum perturbation induced by overexpression of the iodide transporter pendrin. Journal of Cell Science, 2005, 118, 1577-1586.	1.2	45
51	Metabolomic analysis shows differential hepatic effects of T2 and T3 in rats after short-term feeding with high fat diet. Scientific Reports, 2017, 7, 2023.	1.6	45
52	β-Adrenergic Agonist and Antagonist Regulation of Autophagy in HepG2 Cells, Primary Mouse Hepatocytes, and Mouse Liver. PLoS ONE, 2014, 9, e98155.	1.1	44
53	Physiological and Metabolic Changes During the Transition from Hyperthyroidism to Euthyroidism in Graves' Disease. Thyroid, 2016, 26, 1422-1430.	2.4	44
54	Bezafibrate induces autophagy and improves hepatic lipid metabolism in glycogen storage disease type Ia. Human Molecular Genetics, 2019, 28, 143-154.	1.4	43

#	Article	IF	CITATIONS
55	Genetic and bioinformatic analyses of the expression and function of PI3K regulatory subunit PIK3R3 in an Asian patient gastric cancer library. BMC Medical Genomics, 2012, 5, 34.	0.7	41
56	Hepatic FOXO1 Target Genes Are Co-regulated by Thyroid Hormone via RICTOR Protein Deacetylation and MTORC2-AKT Protein Inhibition. Journal of Biological Chemistry, 2016, 291, 198-214.	1.6	40
57	Reciprocal Crosstalk Between Autophagic and Endocrine Signaling in Metabolic Homeostasis. Endocrine Reviews, 2017, 38, 69-102.	8.9	40
58	Hepatic FTO expression is increased in NASH and its silencing attenuates palmitic acid-induced lipotoxicity. Biochemical and Biophysical Research Communications, 2016, 479, 476-481.	1.0	39
59	Anti-Estrogenic Compounds Increase Prolactin and Growth Hormone Synthesis in Clonal Strains of Rat Pituitary Cells1. Endocrinology, 1977, 101, 1151-1156.	1.4	38
60	Mutant and Wild-Type Androgen Receptors Exhibit Cross-Talk on Androgen-, Glucocorticoid-, and Progesterone-Mediated Transcription. Molecular Endocrinology, 1997, 11, 162-171.	3.7	38
61	A peptide inhibitor derived from p55PIK phosphatidylinositol 3-kinase regulatory subunit: a novel cancer therapy. Molecular Cancer Therapeutics, 2008, 7, 3719-3728.	1.9	38
62	Differential AMPK phosphorylation by glucagon and metformin regulates insulin signaling in human hepatic cells. Biochemical and Biophysical Research Communications, 2014, 447, 569-573.	1.0	37
63	Loss of ULK1 increases RPS6KB1-NCOR1 repression of NR1H/LXR-mediated <i>Scd1</i> transcription and augments lipotoxicity in hepatic cells. Autophagy, 2017, 13, 169-186.	4.3	37
64	Vitamin B12 and folate decrease inflammation and fibrosis in NASH by preventing syntaxin 17 homocysteinylation. Journal of Hepatology, 2022, 77, 1246-1255.	1.8	37
65	The Rat Thyroid Hormone Receptor (TR) Δβ3 Displays Cell-, TR Isoform-, and Thyroid Hormone Response Element-Specific Actions. Endocrinology, 2007, 148, 1764-1773.	1.4	36
66	A clinician's guide to understanding resistance to thyroid hormone due to receptor mutations in the TRα and TRβ isoforms. Clinical Diabetes and Endocrinology, 2017, 3, 8.	1.3	36
67	Novel Transcriptional Mechanisms for Regulating Metabolism by Thyroid Hormone. International Journal of Molecular Sciences, 2018, 19, 3284.	1.8	36
68	A Liver-Specific Thyromimetic, VK2809, Decreases Hepatosteatosis in Glycogen Storage Disease Type Ia. Thyroid, 2019, 29, 1158-1167.	2.4	36
69	Thyroid hormone negatively regulates CDX2 and SOAT2 mRNA expression via induction of miRNA-181d in hepatic cells. Biochemical and Biophysical Research Communications, 2013, 440, 635-639.	1.0	35
70	Classification and Proposed Nomenclature for Inherited Defects of Thyroid Hormone Action, Cell Transport, and Metabolism. European Thyroid Journal, 2014, 3, 7-9.	1.2	35
71	Increasing Dietary Medium-Chain Fatty Acid Ratio Mitigates High-fat Diet-Induced Non-Alcoholic Steatohepatitis by Regulating Autophagy. Scientific Reports, 2017, 7, 13999.	1.6	34
72	Distinct and Histone-Specific Modifications Mediate Positive versus Negative Transcriptional Regulation of TSHα Promoter. PLoS ONE, 2010, 5, e9853.	1.1	34

#	Article	IF	CITATIONS
73	Hepatic mitochondrial dysfunction is a feature of Glycogen Storage Disease Type Ia (GSDIa). Scientific Reports, 2017, 7, 44408.	1.6	33
74	Short chain fatty acids induce UCP2-mediated autophagy in hepatic cells. Biochemical and Biophysical Research Communications, 2016, 480, 461-467.	1.0	32
75	Diagnosis and treatment of hypothyroidism in the elderly. Endocrine, 2019, 66, 63-69.	1.1	32
76	Immunohistochemical Expression of Retinoid X Receptor Isoforms in Human Pituitaries and Pituitary Adenomas. Neuroendocrinology, 1997, 65, 299-306.	1.2	31
77	Negative Regulation of TSHα Target Gene by Thyroid Hormone Involves Histone Acetylation and Corepressor Complex Dissociation. Molecular Endocrinology, 2009, 23, 600-609.	3.7	31
78	Lysosomal inhibition attenuates peroxisomal gene transcription via suppression of PPARA and PPARGC1A levels. Autophagy, 2019, 15, 1455-1459.	4.3	31
79	Intracellular Proteolytic Cleavage of 9-cis-Retinoic Acid Receptor α by Cathepsin L-type Protease Is a Potential Mechanism for Modulating Thyroid Hormone Action. Journal of Biological Chemistry, 1998, 273, 33166-33173.	1.6	30
80	Thyroid Hormone Decreases Hepatic Steatosis, Inflammation, and Fibrosis in a Dietary Mouse Model of Nonalcoholic Steatohepatitis. Thyroid, 2022, 32, 725-738.	2.4	30
81	Unliganded TRs regulate growth and developmental timing during early embryogenesis: evidence for a dual function mechanism of TR action. Cell and Bioscience, 2015, 5, 8.	2.1	29
82	Short Chain Fatty Acids Increase Prolactin and Growth Hormone Production and Alter Cell Morphology in the GH3Strain of Rat Pituitary Cells*. Endocrinology, 1981, 109, 17-22.	1.4	28
83	A fluorescent methylation-switchable probe for highly sensitive analysis of FTO <i>N</i> ⁶ -methyladenosine demethylase activity in cells. Chemical Science, 2018, 9, 7174-7185.	3.7	28
84	Hepatic Lipid Catabolism via PPARα-Lysosomal Crosstalk. International Journal of Molecular Sciences, 2020, 21, 2391.	1.8	28
85	Cell Cycle-dependent Expression of Thyroid Hormone Receptor-β Is a Mechanism for Variable Hormone Sensitivity. Molecular Biology of the Cell, 2004, 15, 1895-1903.	0.9	27
86	Classical nuclear hormone receptor activity as a mediator of complex biological responses: A look at health and disease. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 517-528.	2.2	27
87	Graves' Disease after Interleukin-2 Therapy in a Patient with Human Immunodeficiency Virus Infection. Thyroid, 2004, 14, 1097-1102.	2.4	26
88	PI3K Stimulates DNA Synthesis and Cell-Cycle Progression via Its p55PIK Regulatory Subunit Interaction with PCNA. Molecular Cancer Therapeutics, 2013, 12, 2100-2109.	1.9	26
89	Desensitization and Incomplete Recovery of Hepatic Target Genes After Chronic Thyroid Hormone Treatment and Withdrawal in Male Adult Mice. Endocrinology, 2016, 157, 1660-1672.	1.4	26
90	Role of thyroid hormone in hepatic gene regulation, chromatin remodeling, and autophagy. Molecular and Cellular Endocrinology, 2017, 458, 160-168.	1.6	26

#	Article	IF	CITATIONS
91	Gut microbiota and their metabolites in the progression of non-alcoholic fatty liver disease. Hepatoma Research, 2021, 2021, 11.	0.6	25
92	Early induction of hepatic deiodinase type 1 inhibits hepatosteatosis during NAFLD progression. Molecular Metabolism, 2021, 53, 101266.	3.0	22
93	The Glucocorticoid Receptor Interacting Protein 1 (GRIP1) Localizes in Discrete Nuclear Foci That Associate with ND10 Bodies and Are Enriched in Components of the 26S Proteasome. Molecular Endocrinology, 2001, 15, 485-500.	3.7	20
94	Titin truncations lead to impaired cardiomyocyte autophagy and mitochondrial function in vivo. Human Molecular Genetics, 2019, 28, 1971-1981.	1.4	19
95	Increased Hepatic Fat Content in Patients with Resistance to Thyroid Hormone Beta. Thyroid, 2021, 31, 1127-1134.	2.4	18
96	<i>MED1</i> mediator subunit is a key regulator of hepatic autophagy and lipid metabolism. Autophagy, 2021, 17, 4043-4061.	4.3	18
97	Recent advances in understanding thyroid hormone receptor coregulators. Journal of Biomedical Science, 1999, 6, 71-78.	2.6	17
98	Human trabecular meshwork cells as a thyroid hormone target tissue: presence of functional thyroid hormone receptors. Graefe's Archive for Clinical and Experimental Ophthalmology, 1999, 237, 231-240.	1.0	17
99	Adjunctive β 2 â€agonist treatment reduces glycogen independently of receptorâ€mediated acid αâ€glucosidase uptake in the limb muscles of mice with Pompe disease. FASEB Journal, 2014, 28, 2272-2280.	² 0.2	16
100	Fenofibrate rapidly decreases hepatic lipid and glycogen storage in neonatal mice with glycogen storage disease type Ia. Human Molecular Genetics, 2020, 29, 286-294.	1.4	16
101	An integrative approach identified genes associated with drug response in gastric cancer. Carcinogenesis, 2015, 36, 441-451.	1.3	15
102	Thyroid Hormone Receptor α Regulates Autophagy, Mitochondrial Biogenesis, and Fatty Acid Use in Skeletal Muscle. Endocrinology, 2021, 162, .	1.4	15
103	p62, A TFIIH Subunit, Directly Interacts with Thyroid Hormone Receptor and Enhances T3-Mediated Transcription. Molecular Endocrinology, 2005, 19, 879-884.	3.7	14
104	Chronic cold exposure induces autophagy to promote fatty acid oxidation, mitochondrial turnover, and thermogenesis in brown adipose tissue. IScience, 2021, 24, 102434.	1.9	14
105	Decreased autophagy and fuel switching occur in a senescent hepatic cell model system. Aging, 2020, 12, 13958-13978.	1.4	14
106	Resveratrol induces insulin gene expression in mouse pancreatic \hat{I}_{\pm} -cells. Cell and Bioscience, 2013, 3, 47.	2.1	13
107	Links between autophagy and disorders of glycogen metabolism – Perspectives on pathogenesis and possible treatments. Molecular Genetics and Metabolism, 2020, 129, 3-12.	0.5	13

108 Thyrotropin receptor mutations in thyroid diseases. , 2000, 1, 123-129.

#	Article	IF	CITATIONS
109	Studies of Molecular Mechanisms Associated With Increased Deiodinase 3 Expression in a Case of Consumptive Hypothyroidism. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 3965-3971.	1.8	12
110	Thyroid Hormones and Thyromimetics: A New Approach to Nonalcoholic Steatohepatitis?. Hepatology, 2020, 72, 770-771.	3.6	12
111	Region-specific anti-thyroid hormone receptor (TR) antibodies detect changes in TR structure due to ligand-binding and dimerization. Molecular and Cellular Endocrinology, 1993, 97, 93-99.	1.6	11
112	Species Differences in Cardiac Thyroid Hormone Receptor Isoforms Protein Abundance Biological and Pharmaceutical Bulletin, 1997, 20, 1123-1126.	0.6	11
113	An Inhibitory Region of the DNA-Binding Domain of Thyroid Hormone Receptor Blocks Hormone-Dependent Transactivation. Molecular Endocrinology, 1998, 12, 34-44.	3.7	11
114	Renal endoplasmic reticulum stress is coupled to impaired autophagy in a mouse model of GSD Ia. Molecular Genetics and Metabolism, 2017, 122, 95-98.	0.5	9
115	Caffeine prevents restenosis and inhibits vascular smooth muscle cell proliferation through the induction of autophagy. Autophagy, 2022, 18, 2150-2160.	4.3	9
116	Basal and Thyroid Hormone Receptor Auxiliary Protein- Enhanced Binding of Thyroid Hormone Receptor Isoforms to Native Thyroid Hormone Response Elements. Endocrinology, 1991, 129, 3331-3336.	1.4	8
117	Thyroid Hormones and 3,5-Diiodothyropropionic Acid: New Keys for New Locks. Endocrinology, 2006, 147, 1598-1601.	1.4	8
118	Hippo pathway effectors YAP and TAZ and their association with skeletal muscle ageing. Journal of Physiology and Biochemistry, 2021, 77, 63-73.	1.3	8
119	Changes in Hepatic TRβ Protein Expression, Lipogenic Gene Expression, and Long-Chain Acylcarnitine Levels During Chronic Hyperthyroidism and Triiodothyronine Withdrawal in a Mouse Model. Thyroid, 2017, 27, 852-860.	2.4	7
120	Hyperthyroidism in the personalized medicine era: the rise of mathematical optimization. Journal of the Royal Society Interface, 2019, 16, 20190083.	1.5	7
121	Thyroid Hormone Status Regulates Skeletal Muscle Response to Chronic Motor Nerve Stimulation. Frontiers in Physiology, 2019, 10, 1363.	1.3	7
122	Glucocorticoid receptor binding to rat liver nuclei occurs without nuclear transport. Journal of Steroid Biochemistry and Molecular Biology, 1993, 46, 309-320.	1.2	6
123	MTORC1 inhibition drives crinophagic degradation of glucagon. Molecular Metabolism, 2021, 53, 101286.	3.0	6
124	The roles of autophagy and thyroid hormone in the pathogenesis and treatment of NAFLD. , 2021, 7, 72.		6
125	Loss of ULK1 Attenuates Cholesterogenic Gene Expression in Mammalian Hepatic Cells. Frontiers in Cell and Developmental Biology, 2020, 8, 523550.	1.8	5
126	Protocol to Generate Senescent Cells from the Mouse Hepatic Cell Line AML12 to Study Hepatic Aging. STAR Protocols, 2020, 1, 100064.	0.5	5

PAUL M YEN

#	Article	IF	CITATIONS
127	Thyroid Hormone Action. , 2009, , 43-56.		4
128	Thyroid Disorders, Noncommunicable Diseases That Gravely Impact Public Health: A Commentary and Statement by the Advisory Board of the World Thyroid Federation. Thyroid, 2012, 22, 566-567.	2.4	4
129	Transgenic Targeting of a Dominant Negative Corepressor to Liver and Analyses by cDNA Microarray. , 2002, 202, 31-54.		3
130	Autophagic protein ULK1 regulates FOXM1 signalling in human hepatoma cells. Biochemical and Biophysical Research Communications, 2020, 532, 570-575.	1.0	3
131	Pharmacological Inhibition of Lysosomal Activity as a Method For Monitoring Thyroid Hormone-induced Autophagic Flux in Mammalian Cells In Vitro. Methods in Molecular Biology, 2018, 1801, 111-122.	0.4	2
132	CD10 marks non-canonical PPARÎ ³ -independent adipocyte maturation and browning potential of adipose-derived stem cells. Stem Cell Research and Therapy, 2021, 12, 109.	2.4	2
133	MTORC1-dependent crinophagy regulates glucagon content in pancreatic α-cells. Autophagy, 2021, 17, 3269-3270.	4.3	2
134	Factors That Enhance Escherichia coli-Expressed TRÎ ² Binding to T3 and DNA. Thyroid, 1995, 5, 309-313.	2.4	1
135	Studying Hormonal Regulation by Microarrays: Distinguishing the Trees from the Forest. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 1241-1242.	1.8	1
136	Waterboarding is not torture: a physician's response. Lancet, The, 2008, 371, 1838.	6.3	1
137	Molecular Basis of Thyroid Hormone Action. Growth Hormone, 2004, , 1-11.	0.2	1
138	TSHβv-A New Bone to Pick. Endocrinology, 2016, 157, 3402-3404.	1.4	0
139	Thyroid Hormone Receptors and Their Multiple Transcriptional Roles. , 2000, , 99-118.		0
140	Thyroid Hormone Receptor Isoforms. , 2003, , 472-477.		0
141	Mechanisms for Thyroid Hormone Action in the CNS. Contemporary Clinical Neuroscience, 2016, , 3-21.	0.3	0
142	Activation of Liver X receptors (LXRs) increases sphingolipid biosynthesis in hepatic cells Matters Select, 0, , .	3.0	0
143	OR01-06 Resistance to Thyroid Hormone Beta Is Associated with an Increase in Hepatic Fat Measured by Transient Elastography (Fibroscan®) with Controlled Attenuation Parameter (CAP). Journal of the Endocrine Society, 2020, 4, .	0.1	0