
Xueyi Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4210636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hierarchical metal-organic framework (MOF) pore engineering. Microporous and Mesoporous Materials, 2022, 330, 111633.	4.4	28
2	Single-walled zeolitic nanotubes. Science, 2022, 375, 62-66.	12.6	25
3	Scalable Pillar[5]arene-Integrated Poly(arylate-amide) Molecular Sieve Membranes to Separate Light Gases. Chemistry of Materials, 2022, 34, 6559-6567.	6.7	7
4	Oriented 2D metal organic framework coating on bacterial cellulose for nitrobenzene removal from water by filtration. Separation and Purification Technology, 2021, 276, 119366.	7.9	10
5	Finned hierarchical MOFs supported on cellulose for the selective adsorption of <i>n</i> -hexane and 1-hexene. Chemical Communications, 2021, 57, 13756-13759.	4.1	2
6	Novel gas sensing platform based on a stretchable laser-induced graphene pattern with self-heating capabilities. Journal of Materials Chemistry A, 2020, 8, 6487-6500.	10.3	135
7	Hierarchical metal–organic frameworks constructed from intergrowth for the adsorption of light hydrocarbons. Materials Chemistry Frontiers, 2020, 4, 3057-3062.	5.9	7
8	Coordinatively Unsaturated Metal Site-Promoted Selective Adsorption of Organic Molecules on Supported Metal–Organic Framework Nanosheets. Langmuir, 2019, 35, 12908-12913.	3.5	12
9	Recovery of Critical Rare-Earth Elements Using ETS-10 Titanosilicate. Industrial & Engineering Chemistry Research, 2019, 58, 11121-11126.	3.7	9
10	Room-Temperature Synthesis of Two-Dimensional Metal–Organic Frameworks with Controllable Size and Functionality for Enhanced CO ₂ Sorption. Crystal Growth and Design, 2018, 18, 3209-3214.	3.0	36
11	Ethylene Oligomerization to Select Oligomers on Niâ€ETSâ€10. ChemCatChem, 2018, 10, 4234-4237.	3.7	3
12	Structure Determination of Molecular Sieve Nanoparticles with Electron Microscopy and Powder X-Ray Diffraction. Microscopy and Microanalysis, 2017, 23, 1800-1801.	0.4	0
13	Atomic Structure of Self-Pillared, Single-Unit-Cell Sn-MFI Zeolite Nanosheets. Microscopy and Microanalysis, 2016, 22, 1616-1617.	0.4	0
14	Zeolites: On the Synthesis and Adsorption Properties of Single-Unit-Cell Hierarchical Zeolites Made by Rotational Intergrowths (Adv. Funct. Mater. 2/2014). Advanced Functional Materials, 2014, 24, 200-200.	14.9	2
15	On the Synthesis and Adsorption Properties of Singleâ€Unitâ€Cell Hierarchical Zeolites Made by Rotational Intergrowths. Advanced Functional Materials, 2014, 24, 201-208.	14.9	101
16	A high-performance adsorbent for hydrogen sulfide removal. Microporous and Mesoporous Materials, 2014, 190, 152-155.	4.4	63
17	Activity and selectivity differences of external BrÃ,nsted acid sites of single-unit-cell thick and conventional MFI and MWW zeolites. Microporous and Mesoporous Materials, 2014, 200, 287-290.	4.4	42
18	Long-term steam stability of MWW structure zeolites (MCM-22 and ITQ-1). Microporous and Mesoporous Materials, 2014, 193, 134-144.	4.4	21

XUEYI ZHANG

#	Article	IF	CITATIONS
19	Structure replication and growth development of three-dimensionally ordered mesoporous-imprinted zeolites during confined growth. Journal of Materials Research, 2013, 28, 1356-1364.	2.6	13
20	Epitaxially Grown Layered MFl–Bulk MFI Hybrid Zeolitic Materials. ACS Nano, 2012, 6, 9978-9988.	14.6	44
21	Synthesis of Self-Pillared Zeolite Nanosheets by Repetitive Branching. Science, 2012, 336, 1684-1687.	12.6	655
22	Synthesis of mesoporous ZSM-5 zeolites through desilication and re-assembly processes. Microporous and Mesoporous Materials, 2012, 149, 147-157.	4.4	115
23	Oriented CoSAPOâ€5 Membranes by Microwaveâ€Enhanced Growth on TiO ₂ â€Coated Porous Alumina. Angewandte Chemie - International Edition, 2012, 51, 2470-2473.	13.8	30
24	Sub-40 nm Zeolite Suspensions via Disassembly of Three-Dimensionally Ordered Mesoporous-Imprinted Silicalite-1. Journal of the American Chemical Society, 2011, 133, 493-502.	13.7	91
25	Hydrothermal Synthesis of Zeolites with Three-Dimensionally Ordered Mesoporous-Imprinted Structure. Journal of the American Chemical Society, 2011, 133, 12390-12393.	13.7	266
26	Role of ethanol in sodalite crystallization in an ethanol–Na2O–Al2O3–SiO2–H2O system. CrystEngComm, 2011, 13, 4714.	2.6	28
27	Dispersible Exfoliated Zeolite Nanosheets and Their Application as a Selective Membrane. Science, 2011, 334, 72-75.	12.6	601
28	Mesoporous silica nanoparticles from a clear sol and their transformation to lamellar silicalite-1 particles and films. Microporous and Mesoporous Materials, 2011, 138, 239-242.	4.4	11
29	Hydrothermal Formation of the Head-to-Head Coalesced Szaibelyite MgBO2(OH) Nanowires. Nanoscale Research Letters, 2009, 4, 724-731.	5.7	17
30	Morphology preservation and crystallinity improvement in the thermal conversion of the hydrothermal synthesized MgBO2(OH) nanowhiskers to Mg2B2O5 nanowhiskers. Journal of Crystal Growth, 2008, 310, 4262-4267.	1.5	32
31	Influence of process parameters on hydrothermal formation of magnesium borate hydroxide nanowhiskers. Materials Research Innovations, 2007, 11, 188-192.	2.3	7