Sandrine P Claus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4210390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selection of a novel strain of Christensenella minuta as a future biotherapy for Crohn's disease. Scientific Reports, 2022, 12, 6017.	1.6	11
2	Multi ompartment metabolomics and metagenomics reveal major hepatic and intestinal disturbances in cancer cachectic mice. Journal of Cachexia, Sarcopenia and Muscle, 2021, 12, 456-475.	2.9	30
3	A New Strain of Christensenella minuta as a Potential Biotherapy for Obesity and Associated Metabolic Diseases. Cells, 2021, 10, 823.	1.8	42
4	Identifying a Novel Bile Salt Hydrolase from the Keystone Gut Bacterium Christensenella minuta. Microorganisms, 2021, 9, 1252.	1.6	17
5	Entering First-in-Human Clinical Study With a Single-Strain Live Biotherapeutic Product: Input and Feedback Gained From the EMA and the FDA. Frontiers in Medicine, 2021, 8, 716266.	1.2	16
6	Next Generation Microbiome Research: Identification of Keystone Species in the Metabolic Regulation of Host-Gut Microbiota Interplay. Frontiers in Cell and Developmental Biology, 2021, 9, 719072.	1.8	21
7	A new mechanism for cannabidiol in regulating the oneâ€carbon cycle and methionine levels inDictyosteliumand in mammalian epilepsy models. British Journal of Pharmacology, 2020, 177, 912-928.	2.7	19
8	Important Considerations for Sample Collection in Metabolomics Studies with a Special Focus on Applications to Liver Functions. Metabolites, 2020, 10, 104.	1.3	61
9	Anhedonia induced by high-fat diet in mice depends on gut microbiota and leptin. Nutritional Neuroscience, 2020, , 1-14.	1.5	17
10	NMR metabolomics identifies over 60 biomarkers associated with Type II Diabetes impairment in db/db mice. Metabolomics, 2019, 15, 89.	1.4	39
11	Thanatometabolomics: introducing NMR-based metabolomics to identify metabolic biomarkers of the time of death. Metabolomics, 2019, 15, 37.	1.4	23
12	High-fat diet induces depression-like behaviour in mice associated with changes in microbiome, neuropeptide Y, and brain metabolome. Nutritional Neuroscience, 2019, 22, 877-893.	1.5	133
13	Towards microbiome-informed dietary recommendations for promoting metabolic and mental health: Opinion papers of the MyNewGut project. Clinical Nutrition, 2018, 37, 2191-2197.	2.3	29
14	Metabolomics of fecal samples: A practical consideration. Trends in Food Science and Technology, 2016, 57, 244-255.	7.8	58
15	The gut microbiota: a major player in the toxicity of environmental pollutants?. Npj Biofilms and Microbiomes, 2016, 2, 16003.	2.9	470
16	The Inositol-3-Phosphate Synthase Biosynthetic Enzyme Has Distinct Catalytic and Metabolic Roles. Molecular and Cellular Biology, 2016, 36, 1464-1479.	1.1	22
17	Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME Journal, 2016, 10, 1456-1470.	4.4	149
18	Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. British Journal of Nutrition, 2015, 114, 586-595.	1.2	235

SANDRINE P CLAUS

#	Article	IF	CITATIONS
19	New insights into the impact of <i>Lactobacillus</i> population on host-bacteria metabolic interplay. Oncotarget, 2015, 6, 30545-30556.	0.8	45
20	Drinking water application of Denagard® Tiamulin for control of Brachyspira pilosicoli infection of laying poultry. Research in Veterinary Science, 2015, 103, 87-95.	0.9	12
21	Foodomics for personalized nutrition: how far are we?. Current Opinion in Food Science, 2015, 4, 129-135.	4.1	12
22	<i>Brachyspira pilosicoli</i> -induced avian intestinal spirochaetosis. Microbial Ecology in Health and Disease, 2015, 26, 28853.	3.8	6
23	Effect of Breadmaking Process on In Vitro Gut Microbiota Parameters in Irritable Bowel Syndrome. PLoS ONE, 2014, 9, e111225.	1.1	44
24	Nutrimetabonomics: Nutritional Applications of Metabolic Profiling. Science Progress, 2014, 97, 41-47.	1.0	15
25	Mammalian-Microbial Cometabolism of L -Carnitine in the Context of Atherosclerosis. Cell Metabolism, 2014, 20, 699-700.	7.2	9
26	The gut microbiota elicits a profound metabolic reorientation in the mouse jejunal mucosa during conventionalisation. Gut, 2013, 62, 1306-1314.	6.1	118
27	Nutrimetabonomics:Applications for Nutritional Sciences, with Specific Reference to Gut Microbial Interactions. Annual Review of Food Science and Technology, 2013, 4, 381-399.	5.1	45
28	Fighting Undernutrition: Don't Forget the Bugs. Cell Host and Microbe, 2013, 13, 239-240.	5.1	8
29	Early Metabolic Adaptation in C57BL/6 Mice Resistant to High Fat Diet Induced Weight Gain Involves an Activation of Mitochondrial Oxidative Pathways. Journal of Proteome Research, 2013, 12, 1956-1968.	1.8	63
30	Gut bacteria–host metabolic interplay during conventionalisation of the mouse germfree colon. ISME Journal, 2013, 7, 743-755.	4.4	84
31	Metabolic Phenotype Modulation by Caloric Restriction in a Lifelong Dog Study. Journal of Proteome Research, 2013, 12, 3117-3127.	1.8	26
32	Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 2013, 62, 1112-1121.	6.1	632
33	Premature Impairment of Methylation Pathway and Cardiac Metabolic Dysfunction infa/faObese Zucker Rats. Journal of Proteome Research, 2013, 12, 1935-1945.	1.8	9
34	Weaning diet induces sustained metabolic phenotype shift in the pig and influences host response to <i>Bifidobacterium lactis</i> NCC2818. Gut, 2013, 62, 842-851.	6.1	26
35	Gut Microbiota Modulate the Metabolism of Brown Adipose Tissue in Mice. Journal of Proteome Research, 2012, 11, 620-630.	1.8	89
36	Pharmacometabonomic Characterization of Xenobiotic and Endogenous Metabolic Phenotypes That Account for Inter-individual Variation in Isoniazid-Induced Toxicological Response. Journal of Proteome Research, 2012, 11, 4630-4642.	1.8	33

SANDRINE P CLAUS

#	Article	IF	CITATIONS
37	A metabolic system-wide characterisation of the pig: a model for human physiology. Molecular BioSystems, 2011, 7, 2577.	2.9	101
38	Combined Transcriptomic– ¹ H NMR Metabonomic Study Reveals That Monoethylhexyl Phthalate Stimulates Adipogenesis and Glyceroneogenesis in Human Adipocytes. Journal of Proteome Research, 2011, 10, 5493-5502.	1.8	57
39	Colonization-Induced Host-Gut Microbial Metabolic Interaction. MBio, 2011, 2, e00271-10.	1.8	342
40	Identification of potential mechanisms of toxicity after di-(2-ethylhexyl)-phthalate (DEHP) adult exposure in the liver using a systems biology approach. Toxicology and Applied Pharmacology, 2009, 236, 282-292.	1.3	49
41	Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes. Molecular Systems Biology, 2008, 4, 219.	3.2	304
42	Analysis of Time-Related Metabolic Fluctuations Induced by Ethionine in the Rat. Journal of Proteome Research, 2007, 6, 4572-4581.	1.8	51