Jianfa Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/421022/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Allâ€Optical, Nonâ€volatile, Bidirectional, Phaseâ€Change Metaâ€&witch. Advanced Materials, 2013, 25, 3050-3054.	21.0	409
2	An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nature Nanotechnology, 2013, 8, 252-255.	31.5	331
3	Controlling light-with-light without nonlinearity. Light: Science and Applications, 2012, 1, e18-e18.	16.6	275
4	Active metamaterials and metadevices: a review. Journal Physics D: Applied Physics, 2020, 53, 503002.	2.8	261
5	Nanostructured Plasmonic Medium for Terahertz Bandwidth Allâ€Optical Switching. Advanced Materials, 2011, 23, 5540-5544.	21.0	169
6	Near-infrared trapped mode magnetic resonance in an all-dielectric metamaterial. Optics Express, 2013, 21, 26721.	3.4	159
7	Coherent perfect absorption and transparency in a nanostructured graphene film. Optics Express, 2014, 22, 12524.	3.4	154
8	Ultra-directional forward scattering by individual core-shell nanoparticles. Optics Express, 2014, 22, 16178.	3.4	147
9	Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering. Nanoscale, 2015, 7, 13530-13536.	5.6	127
10	Invisible nanowires with interfering electric and toroidal dipoles. Optics Letters, 2015, 40, 2293.	3.3	105
11	Experimental Demonstration of Total Absorption over 99% in the Near Infrared for Monolayerâ€Grapheneâ€Based Subwavelength Structures. Advanced Optical Materials, 2016, 4, 1955-1960.	7.3	99
12	Dielectric loaded graphene plasmon waveguide. Optics Express, 2015, 23, 5147.	3.4	89
13	Toroidal dipoleâ€induced transparency in core–shell nanoparticles. Laser and Photonics Reviews, 2015, 9, 564-570.	8.7	86
14	Ultrabroadband, More than One Order Absorption Enhancement in Graphene with Plasmonic Light Trapping. Scientific Reports, 2015, 5, 16998.	3.3	83
15	Giant Nonlinearity of an Optically Reconfigurable Plasmonic Metamaterial. Advanced Materials, 2016, 28, 729-733.	21.0	82
16	Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators. Optics Express, 2014, 22, 30889.	3.4	79
17	Nonlinear dielectric optomechanical metamaterials. Light: Science and Applications, 2013, 2, e96-e96.	16.6	69
18	Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure. Scientific Reports, 2018, 8, 3239.	3.3	64

#	Article	IF	CITATIONS
19	Large Chiroptical Effects in Planar Chiral Metamaterials. Physical Review Applied, 2017, 7, .	3.8	63
20	Strong anisotropic perfect absorption in monolayer black phosphorous and its application as tunable polarizer. Journal of Optics (United Kingdom), 2017, 19, 075002.	2.2	57
21	Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications. Nanomaterials, 2018, 8, 1033.	4.1	57
22	Continuous metal plasmonic frequency selective surfaces. Optics Express, 2011, 19, 23279.	3.4	54
23	Towards high performance hybrid two-dimensional material plasmonic devices: strong and highly anisotropic plasmonic resonances in nanostructured graphene-black phosphorus bilayer. Optics Express, 2018, 26, 22528.	3.4	52
24	Electrically tunable polarizer based on anisotropic absorption of graphene ribbons. Applied Physics A: Materials Science and Processing, 2014, 114, 1017-1021.	2.3	50
25	Broadband wave absorption in single-layered and nonstructured graphene based on far-field interaction effect. Optics Express, 2017, 25, 9579.	3.4	50
26	Optical gecko toe: Optically controlled attractive near-field forces between plasmonic metamaterials and dielectric or metal surfaces. Physical Review B, 2012, 85, .	3.2	49
27	Toward integrated electrically controllable directional coupling based on dielectric loaded graphene plasmonic waveguide. Optics Letters, 2015, 40, 1603.	3.3	47
28	Terahertz perfect absorber based on flexible active switching of ultra-broadband and ultra-narrowband. Optics Express, 2021, 29, 42787.	3.4	47
29	Towards nano-optical tweezers with graphene plasmons: Numerical investigation of trapping 10-nm particles with mid-infrared light. Scientific Reports, 2016, 6, 38086.	3.3	40
30	Optical activity in monolayer black phosphorus due to extrinsic chirality. Optics Letters, 2019, 44, 1774.	3.3	37
31	Electrically controlling the polarizing direction of a graphene polarizer. Journal of Applied Physics, 2014, 116, .	2.5	36
32	Hybrid metal-graphene plasmonic sensor for multi-spectral sensing in both near- and mid-infrared ranges. Optics Express, 2019, 27, 35914.	3.4	34
33	Multi-peak narrow-band perfect absorber based on two-dimensional graphene array. Diamond and Related Materials, 2021, 120, 108666.	3.9	34
34	Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials. Journal of Optics (United Kingdom), 2014, 16, 125102.	2.2	33
35	Giant optical forces in planar dielectric photonic metamaterials. Optics Letters, 2014, 39, 4883.	3.3	33
36	Tunable asymmetric transmission of THz wave through a graphene chiral metasurface. Journal of Optics (United Kingdom), 2016, 18, 095001.	2.2	32

#	Article	IF	CITATIONS
37	Optical response of plasmonic relief meta-surfaces. Journal of Optics (United Kingdom), 2012, 14, 114002.	2.2	27
38	Coherent perfect absorption and asymmetric interferometric light-light control in graphene with resonant dielectric nanostructures. Optics Express, 2018, 26, 29183.	3.4	27
39	Broadband single-layered graphene absorber using periodic arrays of graphene ribbons with gradient width. Applied Physics Express, 2015, 8, 015102.	2.4	26
40	Nanowell-enhanced Raman spectroscopy enables the visualization and quantification of nanoplastics in the environment. Environmental Science: Nano, 2022, 9, 542-553.	4.3	24
41	Visible to near-infrared coherent perfect absorption in monolayer graphene. Journal of Optics (United) Tj ETQq1	1 0,78431 2.2	4 rgBT /Over
42	Optical nonlinearity and non-reciprocal transmission of graphene integrated metasurface. Carbon, 2021, 173, 126-134.	10.3	23
43	Mie resonance induced broadband near-perfect absorption in nonstructured graphene loaded with periodical dielectric wires. Optics Express, 2018, 26, 20174.	3.4	21
44	Ultra-fast pulse propagation in nonlinear graphene/silicon ridge waveguide. Scientific Reports, 2015, 5, 16734.	3.3	20
45	Fano-Resonance in Hybrid Metal-Graphene Metamaterial and Its Application as Mid-Infrared Plasmonic Sensor. Micromachines, 2020, 11, 268.	2.9	19
46	Bright Multicolored Photoluminescence of Hybrid Graphene/Silicon Optoelectronics. ACS Photonics, 2015, 2, 797-804.	6.6	17
47	Near-Infrared Rewritable, Non-Volatile Subwavelength Absorber Based on Chalcogenide Phase Change Materials. Nanomaterials, 2020, 10, 1222.	4.1	17
48	Electrically tunable absorber based on a graphene integrated lithium niobate resonant metasurface. Optics Express, 2021, 29, 32796.	3.4	17
49	Tunable terahertz half-wave plate based on hybridization effect in coupled graphene nanodisks. Applied Physics Express, 2016, 9, 055102.	2.4	16
50	Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping. Nanomaterials, 2016, 6, 155.	4.1	15
51	Ultra-narrowband visible light absorption in a monolayer MoS ₂ based resonant nanostructure. Optics Express, 2020, 28, 27608.	3.4	15
52	Multiband metamaterial selective absorber for infrared stealth. Applied Optics, 2020, 59, 8768.	1.8	14
53	Graphene-enabled electrically tunability of metalens in the terahertz range. Optics Express, 2020, 28, 28101.	3.4	14
54	Interface engineering of cobalt–sulfide–selenium core–shell nanostructures as bifunctional electrocatalysts toward overall water splitting. Nanoscale, 2021, 13, 6890-6901.	5.6	12

#	Article	IF	CITATIONS
55	Fabrication of a honeycomb-like bimetallic SERS substrate for the detection of triphenyltin chloride. Analyst, The, 2021, 146, 6170-6177.	3.5	11
56	Electrically tuneable directional coupling and switching based on multimode interference effect in dielectric loaded graphene plasmon waveguides. Journal of Optics (United Kingdom), 2016, 18, 065003.	2.2	10
57	Remarkably high-Q resonant nanostructures based on atomically thin two-dimensional materials. Nanoscale, 2019, 11, 23149-23155.	5.6	10
58	Graphene-based electrically controlled terahertz polarization switching between a quarter-wave plate and half-wave plate. Optics Express, 2020, 28, 39430.	3.4	9
59	High resolution graphene angle sensor based on ultra-narrowband optical perfect absorption. Optics Express, 2021, 29, 41206.	3.4	8
60	Graphene plasmonically induced analogue of tunable electromagnetically induced transparency without structurally or spatially asymmetry. Scientific Reports, 2019, 9, 20312.	3.3	7
61	Efficient coupling between an integrated photonic waveguide and an optical fiber. Optics Express, 2021, 29, 27396.	3.4	7
62	Porous Cobalt Sulfide Selenium Nanorods for Electrochemical Hydrogen Evolution. ACS Omega, 2021, 6, 23300-23310.	3.5	7
63	Carbon-Based Metallic Cobalt Pyrite Nanotubes as Stable Electrode Materials for Electrochemical Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 8335-8342.	5.0	6
64	Enhanced Molecular Infrared Spectroscopy Employing Bilayer Graphene Acoustic Plasmon Resonator. Biosensors, 2021, 11, 431.	4.7	6
65	A Transmission-Type Electrically Tunable Polarizer Based on Graphene Ribbons at Terahertz Wave Band. Chinese Physics Letters, 2015, 32, 025202.	3.3	5
66	Enhancement of Near-Infrared Light Graphene Interaction by Nanobeam Resonator. IEEE Photonics Technology Letters, 2015, 27, 2023-2026.	2.5	5
67	Electro-optic switching based on a waveguide-ring resonator made of dielectric-loaded graphene plasmon waveguides. Applied Physics Express, 2016, 9, 092001.	2.4	5
68	Thermal transport properties of suspended graphene. Journal of Applied Physics, 2018, 124, .	2.5	5
69	High Q Resonant Sb2S3-Lithium Niobate Metasurface for Active Nanophotonics. Nanomaterials, 2021, 11, 2373.	4.1	5
70	High Q Resonant Graphene Absorber with Lossless Phase Change Material Sb2S3. Nanomaterials, 2021, 11, 2820.	4.1	5
71	Hybrid magnetic plasmon resonance induced tunable half-wave plate based on graphene-dielectric-metal structure. Journal of Optics (United Kingdom), 2019, 21, 105003.	2.2	4
72	Tuneable infrared perfect absorber based on spatially separated double-layer graphene. Journal of Optics (United Kingdom), 2019, 21, 085002.	2.2	4

#	Article	IF	CITATIONS
73	A suspended metasurface achieves complete light absorption: a 50 nm-thick optical nanomicrophone. Nanoscale, 2020, 12, 18049-18055.	5.6	3
74	Electrically tunable graphene polarization beam splitting utilizing Brewster effect. Journal of Optics (United Kingdom), 2016, 18, 025002.	2.2	2
75	Farâ€Field Excitation of Acoustic Graphene Plasmons with a Metamaterial Absorber. Advanced Photonics Research, 2021, 2, 2000066.	3.6	2
76	Coherent perfect absorption in artificially engineered nanometer metal/semiconductor composite films at oblique incidence. OSA Continuum, 2019, 2, 3251.	1.8	2
77	Metamaterial Coherent Light Absorption - The Time-reversed Analogue of the Lasing Spaser. , 2012, , .		1
78	All-optical, non-volatile, chalcogenide phase-change meta-switch. , 2013, , .		1
79	Photocurrent imaging of CdS/Al interfaces based on microscopic analysis. Applied Optics, 2013, 52, 5230.	1.8	1
80	Controlling Light with Light in a Plasmonic Nanooptomechanical Metamaterial. , 2014, , .		1
81	Fano resonances and strong field enhancements in arrays of asymmetric plasmonic gap-antennas. Journal of Optics (United Kingdom), 2015, 17, 085002.	2.2	1
82	Optomechanical nonlinearity and bistability in dielectric metamaterials. , 2013, , .		0
83	Optical magnetism in all-dielectric metamaterials. , 2013, , .		0
84	Dielectric photonic metamaterials. , 2013, , .		0
85	Coherent control of light-matter interactions in metamaterials: absorption and beyond. , 2016, , .		0
86	Fano resonances in interacting graphene nanodisk oligomers and their applications for sensing. , 2016, , .		0
87	Dual-frequency tunable terahertz half-wave plate based on coupling and hybridization effect in graphene nanodisk dimers. , 2016, , .		0
88	Enhanced Frequency-Upconverted Photoluminescence and Terahertz Emission From Graphene. IEEE Photonics Journal, 2017, 9, 1-10.	2.0	0
89	Enriching contents of optical courses with cutting-edge knowledge in nanophotonics. , 2017, , .		0
90	Strong and Anisotropic Plasmonic Resonances in Nanostructured Graphene-Black Phosphorus Bilayer. , 2018, , .		0

#	Article	IF	CITATIONS
91	Coherent perfect absorption in ultra-thin films. , 2018, , .		0