Gerrit Schüürmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4209994/publications.pdf

Version: 2024-02-01

219 papers 17,360 citations

52 h-index 126 g-index

237 all docs

237 docs citations

times ranked

237

21150 citing authors

#	Article	IF	CITATIONS
1	The Ecoâ€Exposome Concept: Supporting an Integrated Assessment of Mixtures of Environmental Chemicals. Environmental Toxicology and Chemistry, 2022, 41, 30-45.	2.2	25
2	Calibration and field application of the Atlantic HLB Disk containing Chemcatcher® passive sampler – Quantitative monitoring of herbicides, other pesticides, and transformation products in German streams. Journal of Hazardous Materials, 2021, 410, 124538.	6.5	18
3	Pesticides are the dominant stressors for vulnerable insects in lowland streams. Water Research, 2021, 201, 117262.	5.3	118
4	Amino Reactivity of Glutardialdehyde andÂMonoaldehydes─Chemoassay Profile vs Skin Sensitization Potency. Chemical Research in Toxicology, 2021, 34, 2353-2365.	1.7	4
5	Outer-sphere electron transfer does not underpin B ₁₂ -dependent olefinic reductive dehalogenation in anaerobes. Physical Chemistry Chemical Physics, 2021, 23, 27520-27524.	1.3	3
6	Polyethersulfone as suitable passive sampler for waterborne hydrophobic organic compounds – Laboratory calibration and field test in the Sosiani river, Kenya. Science of the Total Environment, 2020, 699, 134056.	3.9	8
7	<i>Oehalococcoides</i> -Mediated B ₁₂ -Dependent Reductive Dehalogenation of Aromatics Does Not Proceed through Outer-Sphere Electron Transfer. Environmental Science & Does Not Proceed through Outer-Sphere Electron Transfer. Environmental Science & Does Not Proceed & Doe	4.6	6
8	In Silico Finding of Key Interaction Mediated $\hat{l}\pm3\hat{l}^24$ and $\hat{l}\pm7$ Nicotinic Acetylcholine Receptor Ligand Selectivity of Quinuclidine-Triazole Chemotype. International Journal of Molecular Sciences, 2020, 21, 6189.	1.8	5
9	Development of Novel Analogs of the Monocarboxylate Transporter Ligand FACH and Biological Validation of One Potential Radiotracer for Positron Emission Tomography (PET) Imaging. Molecules, 2020, 25, 2309.	1.7	4
10	A machine learning approach to discriminate MR1 binders: The importance of the phenol and carbonyl fragments. Journal of Molecular Structure, 2020, 1217, 128459.	1.8	3
11	ERGO: Breaking Down the Wall between Human Health and Environmental Testing of Endocrine Disrupters. International Journal of Molecular Sciences, 2020, 21, 2954.	1.8	31
12	Computational material flow analysis for thousands of chemicals of emerging concern in European waters. Journal of Hazardous Materials, 2020, 397, 122655.	6. 5	31
13	Compartmentâ€Specific Screening Tools for Persistence: Potential Role and Application in the Regulatory Context. Integrated Environmental Assessment and Management, 2019, 15, 470-481.	1.6	4
14	Exposure and ecotoxicological risk assessment of mixtures of top prescribed pharmaceuticals in Swedish freshwaters. Chemosphere, 2019, 220, 344-352.	4.2	33
15	Strengthen the European collaborative environmental research to meet European policy goals for achieving a sustainable, non-toxic environment. Environmental Sciences Europe, 2019, 31, .	2.6	7
16	Interaction Mode and Regioselectivity in Vitamin B ₁₂ -Dependent Dehalogenation of Aryl Halides by <i>Dehalococcoides mccartyi</i> Strain CBDB1. Environmental Science & Environmental Scienc	4.6	10
17	PBT assessment under REACH: Screening for low aquatic bioaccumulation with QSAR classifications based on physicochemical properties to replace BCF in vivo testing on fish. Science of the Total Environment, 2018, 616-617, 97-106.	3.9	26
18	Maternal phthalate exposure promotes allergic airway inflammation over 2 generations through epigenetic modifications. Journal of Allergy and Clinical Immunology, 2018, 141, 741-753.	1.5	92

#	Article	IF	Citations
19	Metabolic Mechanism of Aryl Phosphorus Flame Retardants by Cytochromes P450: A Combined Experimental and Computational Study on Triphenyl Phosphate. Environmental Science & Emp; Technology, 2018, 52, 14411-14421.	4.6	49
20	Computational Insight into the Activation Mechanism of Carcinogenic <i>N</i> '-Nitrosonornicotine (NNN) Catalyzed by Cytochrome P450. Environmental Science & Environmental	4.6	7
21	Glutathione Adduct Patterns of Michael-Acceptor Carbonyls. Environmental Science & Emp; Technology, 2017, 51, 4018-4026.	4.6	13
22	Anaerobic Dehalogenation of Chloroanilines by <i>Dehalococcoides mccartyi</i> Strain CBDB1 and <i>Dehalobacter</i> Strain 14DCB1 via Different Pathways as Related to Molecular Electronic Structure. Environmental Science &	4.6	21
23	The benzene metabolite 1,4-benzoquinone reduces regulatory T-cell function: AÂpotential mechanism for tobacco smoke–associated atopic dermatitis. Journal of Allergy and Clinical Immunology, 2017, 140, 603-605.	1.5	2
24	An Integrated Data-Driven Strategy for Safe-by-Design Nanoparticles: The FP7 MODERN Project. Advances in Experimental Medicine and Biology, 2017, 947, 257-301.	0.8	6
25	Pesticides from wastewater treatment plant effluents affect invertebrate communities. Science of the Total Environment, 2017, 599-600, 387-399.	3.9	131
26	Passive sampling for spatial and temporal monitoring of organic pollutants in surface water of a rural-urban river in Kenya. Science of the Total Environment, 2017, 601-602, 453-460.	3.9	17
27	Adsorption of perfluorocarboxylic acids at the silica surface. Chemical Communications, 2017, 53, 589-592.	2.2	24
28	From the exposome to mechanistic understanding of chemical-induced adverse effects. Environment International, 2017, 99, 97-106.	4.8	146
29	Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments. Ecotoxicology and Environmental Safety, 2017, 145, 135-141.	2.9	49
30	Gas chromatographic determination of perfluorocarboxylic acids in aqueous samples – A tutorial review. Analytica Chimica Acta, 2017, 949, 8-22.	2.6	38
31	Perfluoroalkyl acids in aqueous samples from Germany and Kenya. Environmental Science and Pollution Research, 2017, 24, 11031-11043.	2.7	19
32	Nontargeted detection and identification of (aromatic) amines in environmental samples based on diagnostic derivatization and LC-high resolution mass spectrometry. Chemosphere, 2017, 166, 300-310.	4.2	22
33	Inhalation TTC values: A new integrative grouping approach considering structural, toxicological and mechanistic features. Regulatory Toxicology and Pharmacology, 2016, 78, 8-23.	1.3	21
34	Chemoavailability of Organic Electrophiles: Impact of Hydrophobicity and Reactivity on Their Aquatic Excess Toxicity. Chemical Research in Toxicology, 2016, 29, 952-962.	1.7	31
35	Varying Chirality Across Nicotinic Acetylcholine Receptor Subtypes: Selective Binding of Quinuclidine Triazole Compounds. ACS Medicinal Chemistry Letters, 2016, 7, 890-895.	1.3	10
36	Distribution of polychlorinated biphenyls, phthalic acid esters, polycyclic aromatic hydrocarbons and organochlorine substances in the Moscow River, Russia. Environmental Pollution, 2016, 210, 409-418.	3.7	51

#	Article	lF	CITATIONS
37	Development and application of screening tools for biodegradation in water–sediment systems and soil. Science of the Total Environment, 2016, 544, 1020-1030.	3.9	12
38	New hydrolysis products of the beta-lactam antibiotic amoxicillin, their pH-dependent formation and search in municipal wastewater. Water Research, 2016, 88, 880-888.	5.3	97
39	Variation in predicted internal concentrations in relation to PBPK model complexity for rainbow trout. Science of the Total Environment, 2016, 550, 586-597.	3.9	13
40	Inhalation threshold of toxicological concern (TTC) â€" Structural alerts discriminate high from low repeated-dose inhalation toxicity. Environment International, 2016, 88, 123-132.	4.8	20
41	A Branchâ€andâ€Bound Approach for Tautomer Enumeration. Molecular Informatics, 2015, 34, 263-275.	1.4	2
42	Chemical Safety Assessment Using Read-Across: Assessing the Use of Novel Testing Methods to Strengthen the Evidence Base for Decision Making. Environmental Health Perspectives, 2015, 123, 1232-1240.	2.8	89
43	Computational Biotransformation Profile of Paracetamol Catalyzed by Cytochrome P450. Chemical Research in Toxicology, 2015, 28, 585-596.	1.7	15
44	New systematically modified vesamicol analogs and their affinity and selectivity for the vesicular acetylcholine transporter – A critical examination of the lead structure. European Journal of Medicinal Chemistry, 2015, 100, 50-67.	2.6	12
45	Anaerobic Microbial Transformation of Halogenated Aromatics and Fate Prediction Using Electron Density Modeling. Environmental Science & Environmental	4.6	60
46	Calibration of Chemcatcher \hat{A}^{\otimes} passive sampler for selected highly hydrophobic organic substances under fresh and sea water conditions. Environmental Science: Water Research and Technology, 2015, 1, 218-226.	1.2	9
47	White paper on the promotion of an integrated risk assessment concept in European regulatory frameworks for chemicals. Science of the Total Environment, 2015, 521-522, 211-218.	3.9	21
48	Pesticide impact on aquatic invertebrates identified with Chemcatcher \hat{A}^{\otimes} passive samplers and the SPEAR pesticides index. Science of the Total Environment, 2015, 537, 69-80.	3.9	51
49	Modeling and predicting pKa values of mono-hydroxylated polychlorinated biphenyls (HO-PCBs) and polybrominated diphenyl ethers (HO-PBDEs) by local molecular descriptors. Chemosphere, 2015, 138, 829-836.	4.2	14
50	The SOLUTIONS project: Challenges and responses for present and future emerging pollutants in land and water resources management. Science of the Total Environment, 2015, 503-504, 22-31.	3.9	163
51	Comparison of heavy metal content in two sludge drying reed beds of different age. Ecological Engineering, 2015, 74, 48-55.	1.6	17
52	Linear solvation energy relationships as classifier in non-target analysis – An approach for isocratic liquid chromatography. Journal of Chromatography A, 2014, 1324, 96-103.	1.8	8
53	Optimizing the aquatic toxicity assessment under REACH through an integrated testing strategy (ITS). Environmental Research, 2014, 135, 156-164.	3.7	11
54	Sorption of chlorimuron-ethyl on montmorillonite clays: effects of exchangeable cations, pH, and ionic strength. Environmental Science and Pollution Research, 2014, 21, 11587-11597.	2.7	6

#	Article	IF	CITATIONS
55	Integrated testing strategy (ITS) for bioaccumulation assessment under REACH. Environment International, 2014, 69, 40-50.	4.8	14
56	Individual and combined effects of mycotoxins from typical indoor moulds. Toxicology in Vitro, 2013, 27, 1970-1978.	1.1	14
57	A comparative survey of chemistry-driven in silico methods to identify hazardous substances under REACH. Regulatory Toxicology and Pharmacology, 2013, 66, 301-314.	1.3	42
58	A European perspective on alternatives to animal testing for environmental hazard identification and risk assessment. Regulatory Toxicology and Pharmacology, 2013, 67, 506-530.	1.3	139
59	Model and Mechanism: Nâ€Hydroxylation of Primary Aromatic Amines by Cytochromeâ€P450. Angewandte Chemie - International Edition, 2013, 52, 744-748.	7.2	62
60	Readâ€Across Prediction of the Acute Toxicity of Organic Compounds toward the Water Flea <i>Daphnia magna</i> . Molecular Informatics, 2013, 32, 108-120.	1.4	35
61	Model Suite for Predicting the Aquatic Toxicity of α,βâ€Unsaturated Esters Triggered by Their Chemoavailability. Molecular Informatics, 2013, 32, 98-107.	1.4	5
62	The OSIRIS Weight of Evidence approach: ITS mutagenicity and ITS carcinogenicity. Regulatory Toxicology and Pharmacology, 2013, 67, 170-181.	1.3	14
63	Perspectives for integrating human and environmental risk assessment and synergies with socio-economic analysis. Science of the Total Environment, 2013, 456-457, 307-316.	3.9	37
64	TTC: A new concept for inhalation exposure. Toxicology Letters, 2013, 221, S230.	0.4	1
65	The OSIRIS Weight of Evidence approach: ITS for skin sensitisation. Regulatory Toxicology and Pharmacology, 2013, 67, 146-156.	1.3	30
66	The OSIRIS Weight of Evidence approach: ITS for the endpoints repeated-dose toxicity (RepDose ITS). Regulatory Toxicology and Pharmacology, 2013, 67, 157-169.	1.3	19
67	Prediction of gas chromatographic retention indices as classifier in non-target analysis of environmental samples. Journal of Chromatography A, 2013, 1285, 139-147.	1.8	17
68	Computational Evidence for \hat{l}_{\pm} -Nitrosamino Radical as Initial Metabolite for Both the P450 Dealkylation and Denitrosation of Carcinogenic Nitrosamines. Journal of Physical Chemistry B, 2012, 116, 903-912.	1.2	39
69	Linear solvation energy relationships as classifiers in non-target analysis – A gas chromatographic approach. Journal of Chromatography A, 2012, 1264, 95-103.	1.8	9
70	Chemoassay Screening of DNA-Reactive Mutagenicity with 4-(4-Nitrobenzyl)pyridine – Application to Epoxides, Oxetanes, and Sulfur Heterocycles. Chemical Research in Toxicology, 2012, 25, 2092-2102.	1.7	23
71	Identification of river basin specific pollutants and derivation of environmental quality standards: A case study in the Slovak Republic. TrAC - Trends in Analytical Chemistry, 2012, 41, 133-145.	5.8	46
72	Structural Alerts for the Excess Toxicity of Acrylates, Methacrylates, and Propiolates Derived from Their Short-Term and Long-Term Bacterial Toxicity. Chemical Research in Toxicology, 2012, 25, 170-180.	1.7	27

#	Article	IF	Citations
73	Quantitative Read-Across for Predicting the Acute Fish Toxicity of Organic Compounds. Environmental Science & Environmental Sc	4.6	74
74	Prediction of the Dissociation Constant $p < i > K < / i > < sub > a < / sub > of Organic Acids from Local Molecular Parameters of Their Electronic Ground State. Journal of Chemical Information and Modeling, 2011, 51, 2336-2344.$	2.5	15
75	Epoxide and Thiirane Toxicity In vitro with the Ciliates <i>Tetrahymena pyriformis</i> Structural Alerts Indicating Excess Toxicity. Environmental Science & Excess Toxicity.	4.6	57
76	Occurrence and Toxicity of 331 Organic Pollutants in Large Rivers of North Germany over a Decade (1994 to 2004). Environmental Science & Eamp; Technology, 2011, 45, 6167-6174.	4.6	73
77	A new risk assessment approach for the prioritization of 500 classical and emerging organic microcontaminants as potential river basin specific pollutants under the European Water Framework Directive. Science of the Total Environment, 2011, 409, 2064-2077.	3.9	259
78	Determination of lindane leachability in soil–biosolid systems and its bioavailability in wheat plants. Chemosphere, 2011, 84, 397-402.	4.2	17
79	Linear Solvation Energy Relationships as classifiers in non-target analysisâ€"A capillary liquid chromatography approach. Journal of Chromatography A, 2011, 1218, 8192-8196.	1.8	31
80	Predicting Michael-acceptor reactivity and toxicity through quantum chemical transition-state calculations. Organic and Biomolecular Chemistry, 2011, 9, 8400.	1.5	69
81	Prediction models for the Abraham hydrogen bond donor strength: comparison of semiâ€empirical, <i>ab initio</i> , and DFT methods. Journal of Physical Organic Chemistry, 2011, 24, 1072-1080.	0.9	30
82	1-Methyl-4-(4-nitrobenzoyl)pyridinium perchlorate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2542-o2543.	0.2	0
83	Predicting rate constants of OH radical reactions with organic substances: advances for oxygenated organics through a molecular orbital HF/6-31G** approach. Theoretical Chemistry Accounts, 2010, 127, 355-367.	0.5	6
84	Application of preparative capillary gas chromatography (pcGC), automated structure generation and mutagenicity prediction to improve effect-directed analysis of genotoxicants in a contaminated groundwater. Environmental Science and Pollution Research, 2010, 17, 885-897.	2.7	31
85	Quantitative and qualitative models for carcinogenicity prediction for non-congeneric chemicals using CP ANN method for regulatory uses. Molecular Diversity, 2010, 14, 581-594.	2.1	45
86	Tautomer Identification and Tautomer Structure Generation Based on the InChI Code. Journal of Chemical Information and Modeling, 2010, 50, 1223-1232.	2. 5	23
87	Prediction of Michael-Type Acceptor Reactivity toward Glutathione. Chemical Research in Toxicology, 2010, 23, 1576-1585.	1.7	115
88	Acute and Chronic Toxicity toward the Bacteria <i>Vibrio fischeri</i> of Organic Narcotics and Epoxides: Structural Alerts for Epoxide Excess Toxicity. Chemical Research in Toxicology, 2010, 23, 1936-1946.	1.7	34
89	Comparative Analysis of QSAR Models for Predicting pKa of Organic Oxygen Acids and Nitrogen Bases from Molecular Structure. Journal of Chemical Information and Modeling, 2010, 50, 1949-1960.	2.5	28
90	Local Electrophilicity Predicts the Toxicity-Relevant Reactivity of Michael Acceptors. Journal of Physical Chemistry Letters, 2010, 1, 1605-1610.	2.1	53

#	Article	IF	CITATIONS
91	Thiol Reactivity and Its Impact on the Ciliate Toxicity of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Aldehydes, Ketones, and Esters. Chemical Research in Toxicology, 2010, 23, 1905-1912.	1.7	58
92	Modeling the H bond donor strength of OH, NH, and CH sites by local molecular parameters. Journal of Computational Chemistry, 2009, 30, 1454-1464.	1.5	39
93	Estimation of Soil Organic Carbon Normalized Sorption Coefficient (<i>K</i> _{oc}) Using Least Squaresâ€Support Vector Machine. QSAR and Combinatorial Science, 2009, 28, 561-567.	1.5	27
94	A novel in vitro system for the determination of bioconcentration factors and the internal dose in zebrafish (Danio rerio) eggs. Chemosphere, 2009, 77, 928-933.	4.2	34
95	Prediction of the Intrinsic Hydrogen Bond Acceptor Strength of Organic Compounds by Local Molecular Parameters. Journal of Chemical Information and Modeling, 2009, 49, 956-962.	2.5	43
96	Applicability domain of TTC (Threshold of Toxicological Concern) schemes—A conceptual approach. Toxicology Letters, 2009, 189, S11.	0.4	0
97	Prediction of the Intrinsic Hydrogen Bond Acceptor Strength of Chemical Substances from Molecular Structure. Journal of Physical Chemistry A, 2009, 113, 10104-10112.	1.1	41
98	Kinetic Glutathione Chemoassay To Quantify Thiol Reactivity of Organic Electrophiles—Application to α,β-Unsaturated Ketones, Acrylates, and Propiolates. Chemical Research in Toxicology, 2009, 22, 742-750.	1.7	100
99	Chemical Domain of QSAR Models from Atom-Centered Fragments. Journal of Chemical Information and Modeling, 2009, 49, 2660-2669.	2.5	67
100	External Validation and Prediction Employing the Predictive Squared Correlation Coefficient — Test Set Activity Mean vs Training Set Activity Mean. Journal of Chemical Information and Modeling, 2008, 48, 2140-2145.	2.5	461
101	First CoMFA Characterization of Vesamicol Analogs as Ligands for the Vesicular Acetylcholine Transporter. Journal of Medicinal Chemistry, 2008, 51, 2128-2136.	2.9	10
102	Determination of Temperature-Dependent Henry's Law Constant of Four Oxygenated Solutes in Water Using Headspace Solid-Phase Microextraction Technique. Journal of Chemical & Engineering Data, 2008, 53, 2873-2877.	1.0	8
103	Calibration of the Chemcatcher \hat{A}^{\otimes} passive sampler for monitoring selected polar and semi-polar pesticides in surface water. Environmental Pollution, 2008, 155, 52-60.	3.7	7 5
104	Indirect Photolysis of Organic Compounds: Prediction of OH Reaction Rate Constants through Molecular Orbital Calculations. Journal of Physical Chemistry A, 2008, 112, 11391-11399.	1.1	15
105	Chapter 10 Membrane-enclosed sorptive coating for the monitoring of organic compounds in water. Comprehensive Analytical Chemistry, 2007, 48, 231-249.	0.7	3
106	Comment on "Discriminating toxicant classes by mode of action: 3. Substructure indicators―(M.) Tj ETQq0 0 2007, 18, 621-624.	0 0 rgBT /O 1.0	Overlock 10 T 3
107	Estimation of Compartmental Half-lives of Organic Compounds – Structural Similarityversus EPI-Suite. QSAR and Combinatorial Science, 2007, 26, 542-549.	1.5	33
108	Silicone rod extraction of pharmaceuticals from water. Analytical and Bioanalytical Chemistry, 2007, 387, 1417-1421.	1.9	28

#	Article	IF	Citations
109	Model Selection Based on Structural Similarityâ^'Method Description and Application to Water Solubility Prediction. Journal of Chemical Information and Modeling, 2006, 46, 636-641.	2.5	46
110	Prediction of the Sorption of Organic Compounds into Soil Organic Matter from Molecular Structure. Environmental Science & Env	4.6	66
111	Comparative application of solid-phase microextraction fibre assemblies and semi-permeable membrane devices as passive air samplers for semi-volatile chlorinated organic compounds. A case study on the landfill "Grube Antonie―in Bitterfeld, Germany. Environmental Pollution, 2006, 144, 414-422.	3.7	33
112	Prediction of Physicochemical Properties of Organic Compounds from 2D Molecular Structure – Fragment Methods vs. LFER Models. Chimia, 2006, 60, 691-698.	0.3	26
113	Rapid semi-continuous calibration and field test of membrane-enclosed silicone collector as passive water sampler. Journal of Chromatography A, 2006, 1124, 187-195.	1.8	47
114	ACUTE TO CHRONIC RATIOS IN AQUATIC TOXICITYâ€"VARIATION ACROSS TROPHIC LEVELS AND RELATIONSHIP WITH CHEMICAL STRUCTURE. Environmental Toxicology and Chemistry, 2006, 25, 2937.	2.2	110
115	Neue Kooperation in den Umweltwissenschaften — Assoziation zwischen GDCh und UWSF. Environmental Sciences Europe, 2006, 18, 78-79.	0.1	1
116	Influence of different emission sources on atmospheric organochlorine patterns in Germany. Atmospheric Environment, 2006, 40, 943-957.	1.9	17
117	Indirect determination of low vapour pressures using solid-phase microextraction—application to tetrachlorobenzenes and tetrachlorobenzyltoluenes. Journal of Chromatography A, 2005, 1072, 93-97.	1.8	9
118	Postgraduale Weiterbildung mit dem zertifizierten Abschluss Fachökotoxikologin/e GDCh/SETAC. Environmental Sciences Europe, 2005, 17, 129-130.	0.1	2
119	Prediction of the Temperature Dependency of Henry's Law Constant from Chemical Structure. Environmental Science & Environmenta	4.6	53
120	Modeling Photoinduced Algal Toxicity of Polycyclic Aromatic Hydrocarbons. Environmental Science & Envi	4.6	60
121	ALGAL TOXICITY OF NITROBENZENES: COMBINED EFFECT ANALYSIS AS A PHARMACOLOGICAL PROBE FOR SIMILAR MODES OF INTERACTION. Environmental Toxicology and Chemistry, 2005, 24, 324.	2.2	71
122	Ecotoxicological Profiling of Transect River Elbe Sediments. Clean - Soil, Air, Water, 2005, 33, 555-569.	0.8	18
123	Performance of semipermeable membrane devices for sampling of organic contaminants in groundwater. Journal of Environmental Monitoring, 2005, 7, 500.	2.1	16
124	Structural AlertsA New Classification Model to Discriminate Excess Toxicity from Narcotic Effect Levels of Organic Compounds in the Acute Daphnid Assay. Chemical Research in Toxicology, 2005, 18, 536-555.	1.7	174
125	Description of the Electronic Structure of Organic Chemicals Using Semiempirical and Ab Initio Methods for Development of Toxicological QSARs. Journal of Chemical Information and Modeling, 2005, 45, 106-114.	2.5	51
126	Octanol/Water Partition Coefficient of Selected Herbicides:  Determination Using Shake-Flask Method and Reversed-Phase High-Performance Liquid Chromatography. Journal of Chemical & Engineering Data, 2004, 49, 1639-1642.	1.0	51

#	Article	IF	Citations
127	Dialysis of Persistent Organic Pollutants and Polycyclic Aromatic Hydrocarbons from Semipermeable Membranes. A Procedure Using an Accelerated Solvent Extraction Device. Analytical Chemistry, 2004, 76, 5503-5509.	3.2	30
128	QUANTITATIVE STRUCTURE–PROPERTY RELATIONSHIPS FOR PREDICTING HENRY'S LAW CONSTANT FROM MOLECULAR STRUCTURE. Environmental Toxicology and Chemistry, 2003, 22, 1755.	2.2	52
129	MIXTURE TOXICITY AND ITS MODELING BY QUANTITATIVE STRUCTURE–ACTIVITY RELATIONSHIPS. Environmental Toxicology and Chemistry, 2003, 22, 1900.	2.2	326
130	IDENTIFICATION OF TOXIC PRODUCTS OF ANTHRACENE PHOTOMODIFICATION IN SIMULATED SUNLIGHT. Environmental Toxicology and Chemistry, 2003, 22, 2228.	2.2	57
131	One-step cleanup for PAH residue analysis in plant matrices using size-exclusion chromatography. Analytical and Bioanalytical Chemistry, 2003, 376, 53-60.	1.9	25
132	Toxizitäsreduktion durch (Grundwasser-) Sanierung?. Grundwasser, 2003, 8, 32-40.	1.4	0
133	Structure-Activity Relationships for the Toxicity of Substituted Poly-hydroxylated Benzenes toTetrahymena pyriformis: Influence of Free Radical Formation. QSAR and Combinatorial Science, 2003, 22, 575-582.	1.5	20
134	Modeling Discrimination between Antibacterial and Non-Antibacterial Activity based on 3D Molecular Descriptors. QSAR and Combinatorial Science, 2003, 22, 113-128.	1.5	28
135	Multilinear Regression and Comparative Molecular Field Analysis (CoMFA) of Azo Dyeâ^Fiber Affinities. 2. Inclusion of Solution-Phase Molecular Orbital Descriptors. Journal of Chemical Information and Computer Sciences, 2003, 43, 1502-1512.	2.8	25
136	Stepwise Discrimination between Four Modes of Toxic Action of Phenols in the Tetrahymena pyriformis Assay. Chemical Research in Toxicology, 2003, 16, 974-987.	1.7	62
137	Polychlorinated naphthalenes in sediments from the industrial region of Bitterfeld. Environmental Pollution, 2003, 121, 81-85.	3.7	55
138	Establishing Causality between Pollution and Effects at Different Levels of Biological Organization: The VALIMAR Project. Human and Ecological Risk Assessment (HERA), 2003, 9, 171-194.	1.7	24
139	Calibrating the Uptake Kinetics of Semipermeable Membrane Devices in Water:Â Impact of Hydrodynamics. Environmental Science &	4.6	117
140	Comparative Molecular Field Analysis (CoMFA) of Anionic Azo Dye-Fiber Affinities I:  Gas-Phase Molecular Orbital Descriptors. Journal of Chemical Information and Computer Sciences, 2002, 42, 788-795.	2.8	21
141	Structure-Based Classification of Antibacterial Activity. Journal of Chemical Information and Computer Sciences, 2002, 42, 869-878.	2.8	97
142	Aqueous Solubilityâ^'Molecular Size Relationships:  A Mechanistic Case Study Using C10- to C19-Alkanes. Journal of Physical Chemistry A, 2002, 106, 2760-2765.	1.1	78
143	Effects of trichloroacetic acid on the nitrogen metabolism of Pinus sylvestris – a tracer study. Chemosphere, 2002, 46, 259-266.	4.2	9
144	Fate of POPs (DDX, HCHs, PCBs) in upper soil layers of pine forests. Science of the Total Environment, 2002, 286, 143-154.	3.9	81

#	Article	IF	CITATIONS
145	Multivariate Discrimination between Modes of Toxic Action of Phenols. QSAR and Combinatorial Science, 2002, 21, 12.	1.4	93
146	Impact of Orthogonal Signal Correction (OSC) on the Predictive Ability of CoMFA Models for the Ciliate Toxicity of Nitrobenzenes Dedicated to Professor Werner Klein, Schmallenberg (Germany), on the oaccastion of his 65th birthday. QSAR and Combinatorial Science, 2002, 21, 3.	1.4	20
147	Effectâ€directed fractionation and identification of cytochrome P4501Aâ€inducing halogenated aromatic hydrocarbons in a contaminated sediment. Environmental Toxicology and Chemistry, 2002, 21, 2654-2662.	2.2	66
148	Application of different RP-HPLC methods for the determination of the octanol/water partition coefficient of selected tetrachlorobenzyltoluenes. Chemosphere, 2001, 45, 721-728.	4.2	23
149	Correlation of aerobic biodegradability of sulfonated azo dyes with the chemical structure. Chemosphere, 2001, 45, 1-9.	4.2	88
150	Persistent organic pollutants in agricultural soils of central Germany. Science of the Total Environment, 2001, 277, 187-198.	3.9	217
151	Application of Neural Networks to Modeling and Estimating Temperature-Dependent Liquid Viscosity of Organic Compounds. Journal of Chemical Information and Computer Sciences, 2001, 41, 776-790.	2.8	35
152	Membrane-Enclosed Sorptive Coating. An Integrative Passive Sampler for Monitoring Organic Contaminants in Water. Analytical Chemistry, 2001, 73, 5191-5200.	3.2	96
153	Use of semipermeable membrane devices (SPMDs). Environmental Science and Pollution Research, 2001, 8, 27-34.	2.7	51
154	QSAR Modeling of Antimycobacterial Activity and Activity Against Other Bacteria of 3-Formyl Rifamycin SV Derivatives. QSAR and Combinatorial Science, 2001, 20, 298-318.	1.4	6
155	Gaussian-theory predictions of proton transfer to water of phenol and 3-chlorophenol: resolution of an apparent difficulty. Chemical Physics Letters, 2001, 342, 402-404.	1.2	1
156	Title is missing!. Hydrobiologia, 2001, 8, 161-178.	1.0	52
157	Title is missing!. Hydrobiologia, 2001, 8, 319-336.	1.0	18
158	Prediction of Henry's law constant of benzene derivatives using quantum chemical continuum-solvation models. Journal of Computational Chemistry, 2000, 21, 17-34.	1.5	18
159	Prediction of liquid viscosity for organic compounds by a quantitative structure-property relationship. Journal of Physical Organic Chemistry, 2000, 13, 80-86.	0.9	51
160	KonzentrationsabhÄ n gigkeit desOctanol/Wasser-Verteilungskoeffizienten der Hexachlorcyclohexan-Isomere bei 25 °C. Chemie-Ingenieur-Technik, 2000, 72, 84-88.	0.4	0
161	Multimedia levelâ€III partitioning and residence times of xenobiotics in waterâ€rich and waterâ€poor environments. Environmental Toxicology and Chemistry, 2000, 19, 1430-1440.	2.2	4
162	Quantitative Structureâ ⁻ 'Activity Analysis of the Algae Toxicity of Nitroaromatic Compounds. Chemical Research in Toxicology, 2000, 13, 441-450.	1.7	86

#	Article	IF	CITATIONS
163	Urease inhibition: a tool for toxicity identification in sediment elutriates. Chemosphere, 2000, 40, 829-834.	4.2	21
164	Analysis of the Flow Patterns of Liquid Organic Compounds between Blade Electrodes by Classification Models. Journal of Chemical Information and Computer Sciences, 2000, 40, 988-993.	2.8	3
165	High Extraction Efficiency for POPs in Real Contaminated Soil Samples Using Accelerated Solvent Extraction. Analytical Chemistry, 2000, 72, 1294-1300.	3.2	125
166	FIXED-EFFECT-LEVEL TOXICITY EQUIVALENTS—A SUITABLE PARAMETER FOR ASSESSING ETHOXYRESORUFIN-O-DEETHYLASE INDUCTION POTENCY IN COMPLEX ENVIRONMENTAL SAMPLES. Environmental Toxicology and Chemistry, 2000, 19, 2493.	2.2	63
167	Gas-phase and solution-phase proton transfer to H2O analyzed by high-level ab initio quantum chemistry including complete basis set and Gaussian theory schemes. Chemical Physics Letters, 1999, 302, 471-479.	1.2	24
168	Simple Algorithms for Determining the Molecular Symmetry. Journal of Chemical Information and Computer Sciences, 1999, 39, 728-737.	2.8	20
169	Solubility and partitioning studies with polycyclic aromatic hydrocarbons using an optimized SPME procedure. Fresenius' Journal of Analytical Chemistry, 1999, 363, 426-428.	1.5	19
170	15N Metabolic test for the determination of phytotoxic effects of chemicals and contaminated environmental samples. Environmental Science and Pollution Research, 1999, 6, 72-76.	2.7	12
171	Aqueous solubility, octanol solubility, and octanol/water partition coefficient of nine hydrophobic dyes. Environmental Toxicology and Chemistry, 1999, 18, 1109-1117.	2.2	9
172	Airborne trichloroacetic acid and its deposition in the catchment area of the Caspian Sea. Environmental Pollution, 1999, 104, 359-364.	3.7	27
173	Economic upheaval in 1990–93 and the ecological situation in central Germany. Environmental Pollution, 1999, 105, 341-347.	3.7	11
174	Biomonitoring of airborne inorganic and organic pollutants by means of pine tree barks. I. Temporal and spatial variations. Science of the Total Environment, 1999, 232, 49-58.	3.9	120
175	Ecotoxicological Hazard and Risk Assessment of Heavy Metal Contents in Agricultural Soils of Central Germany. Ecotoxicology and Environmental Safety, 1999, 42, 191-201.	2.9	36
176	Water solubility and octanol/water-partitioning of hydrophobic chlorinated organic substances determined by using SPME/GC. Fresenius' Journal of Analytical Chemistry, 1998, 360, 52-57.	1.5	33
177	Accelerated Solvent Extraction of Semivolatile Organic Compounds from Biomonitoring Samples of Pine Needles and Mosses. Analytical Chemistry, 1998, 70, 4827-4835.	3.2	86
178	Diffusion Coefficients of Substituted Benzenes and Alcohols at High Dilution in Octan-1-ol. Journal of Chemical & Chemica	1.0	17
179	Prediction of the pKa of Carboxylic Acids Using the ab Initio Continuum-Solvation Model PCM-UAHF. Journal of Physical Chemistry A, 1998, 102, 6706-6712.	1.1	204
180	Quantum chemical analysis of the energy of proton transfer from phenol and chlorophenols to H2O in the gas phase and in aqueous solution. Journal of Chemical Physics, 1998, 109, 9523-9528.	1.2	36

#	Article	IF	Citations
181	A Kinetic Analysis of the Conformational Flexibility of Steroid Hormones. QSAR and Combinatorial Science, 1998, 17, 437-449.	1.4	18
182	Determination of Throughfall Rates on the Basis of Pine Bark Loads: Results of a Pilot Field Study. Journal of the Air and Waste Management Association, 1997, 47, 510-516.	0.9	12
183	Development of Both Linear and Nonlinear Methods To Predict the Liquid Viscosity at 20 °C of Organic Compounds. Journal of Chemical Information and Computer Sciences, 1997, 37, 1122-1128.	2.8	31
184	Discrete modeling of water and pesticide movement in soil. Water Resources Research, 1997, 33, 1743-1747.	1.7	4
185	Immission patterns of airborne pollutants in Argentina and Germany II. Biomonitoring of organochlorine compounds and polycyclic aromatics. Chemosphere, 1997, 34, 2505-2518.	4.2	41
186	Estimation of vapour pressures for hydrocarbons and halogenated hydrocarbons from chemical structure by a neural network. Chemosphere, 1997, 34, 671-686.	4.2	21
187	Multivariate mode-of-action analysis of acute toxicity of phenols. Aquatic Toxicology, 1997, 38, 277-296.	1.9	43
188	Anthropogenic impacts on natural nitrogen isotope variations in Pinus sylvestris stands in an industrially polluted area. Environmental Pollution, 1997, 97, 175-181.	3.7	50
189	Error propagation in fugacity levelâ€III models in the case of uncertain physicochemical compound properties. Environmental Toxicology and Chemistry, 1997, 16, 2067-2069.	2.2	16
190	Short Communication—ERROR PROPAGATION IN FUGACITY LEVEL-III MODELS IN THE CASE OF UNCERTAIN PHYSICOCHEMICAL COMPOUND PROPERTIES. Environmental Toxicology and Chemistry, 1997, 16, 2067.	2.2	14
191	Cytotoxicity of MEIC Chemicals to Rainbow Trout R1 Cell Line and Multivariate Comparison with Ecotoxicity Tests. ATLA Alternatives To Laboratory Animals, 1997, 25, 331-338.	0.7	9
192	Diffusion Coefficients of Substituted Benzenes at High Dilution in Water. Journal of Chemical & Engineering Data, 1996, 41, 33-36.	1.0	33
193	Structureâ€"activity relationships for chloro―and nitrophenol toxicity in the pollen tube growth test. Environmental Toxicology and Chemistry, 1996, 15, 1702-1708.	2.2	42
194	Modelling pKaof Carboxylic Acids and Chlorinated Phenols. QSAR and Combinatorial Science, 1996, 15, 121-132.	1.4	55
195	STRUCTURE–ACTIVITY RELATIONSHIPS FOR CHLORO- AND NITROPHENOL TOXICITY IN THE POLLEN TUBE GROWTH TEST. Environmental Toxicology and Chemistry, 1996, 15, 1702.	2.2	40
196	Evaluation of regional heavy metal deposition by multivariate analysis of element contents in pine tree barks. Water, Air, and Soil Pollution, 1995, 84, 367-383.	1.1	74
197	Quantum chemical approach to estimate physicochemical compound properties: Application to substituted benzenes. Environmental Toxicology and Chemistry, 1995, 14, 2067-2076.	2.2	18
198	¹⁵ N/ ¹⁴ N Analysis of Amino Acids with GC-C-IRMS - Methodical Investigations and Ecotoxicological Applications. Isotopes in Environmental and Health Studies, 1995, 31, 367-375.	0.5	29

#	Article	IF	Citations
199	Group contribution methods to estimate water solubility of organic chemicals. Chemosphere, 1995, 30, 2061-2077.	4.2	132
200	Cytotoxicity of metals toward rainbow trout R1 cell line. Environmental Toxicology and Water Quality, 1994, 9, 273-279.	0.7	34
201	Backâ€propagation neural networksâ€recognition vs. prediction capability. Environmental Toxicology and Chemistry, 1994, 13, 743-747.	2.2	21
202	Modelling the Toxicity of Organophosphates: a Comparison of the Multiple Linear Regression and PLS Regression Methods. QSAR and Combinatorial Science, 1994, 13, 133-143.	1.4	12
203	Ozone effects on nitrogen incorporation and superoxide dismutase activity in spruce seedlings (Picea) Tj ETQq1 1	1 <u>9.</u> 784314	4_rgBT /Ove
204	BACK-PROPAGATION NEURAL NETWORKS–RECOGNITION VS. PREDICTION CAPABILITY. Environmental Toxicology and Chemistry, 1994, 13, 743.	2.2	16
205	COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. Journal of the Chemical Society Perkin Transactions II, 1993, , 799-805.	0.9	8,014
206	Acute aquatic toxicity of alkyl phenol ethoxylates. Ecotoxicology and Environmental Safety, 1991, 21, 227-233.	2.9	20
207	Do Hammett constants model electronic properties in QSARs?. Science of the Total Environment, 1991, 109-110, 221-235.	3.9	11
208	Predictive QSPR models for estimating soil sorption coefficients: potential and limitations based on dominating processes. Science of the Total Environment, 1991, 109-110, 343-354.	3.9	28
209	First-order and pseudo-first-order elimination kinetics. Science of the Total Environment, 1991, 109-110, 395-405.	3.9	9
210	QSARs in the chemical industry: need, scope and current limitations. Science of the Total Environment, 1991, 109-110, 671-675.	3.9	6
211	QSAR analysis of the acute fish toxicity of organic phosphorothionates using theoretically derived molecular descriptors. Environmental Toxicology and Chemistry, 1990, 9, 417-428.	2.2	86
212	Quantitative Structure-Property Relationships for the Polarizability, Solvatochromic Parameters and Lipophilicity. QSAR and Combinatorial Science, 1990, 9, 326-333.	1.4	41
213	QSAR analysis of the acute toxicity of oxyethylated surfactants. Chemosphere, 1990, 21, 467-478.	4.2	18
214	Prediction of aqueous solubility and the octanol-water partition coefficient for lipophilic organic compounds using molecular descriptors and physicochemical properties. Chemosphere, 1990, 21, 877-888.	4.2	22
215	Quantitative structure-activity relationships for the toxicity of selected shale oil components to mixed marine bacteria. Ecotoxicology and Environmental Safety, 1989, 17, 133-148.	2.9	10
216	Prediction of the toxicity of mixtures of shale oil components. Ecotoxicology and Environmental Safety, 1989, 18, 121-128.	2.9	16

#	Article	IF	CITATIONS
217	Advances in bioconcentration prediction. Chemosphere, 1988, 17, 1551-1574.	4.2	48
218	Evaluation of various molecular parameters as predictors of bioconcentration in fish. Ecotoxicology and Environmental Safety, 1988, 15, 324-335.	2.9	26
219	Interpretation of the electronic spectra of substituted naphthalenes. Chemical Physics, 1987, 113, 241-249.	0.9	3