## **Christian Gorzelanny**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4209731/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Interplay between coagulation and inflammation in cancer: Limitations and therapeutic opportunities.<br>Cancer Treatment Reviews, 2022, 102, 102322.                                                                                                | 7.7  | 29        |
| 2  | Insights into the Steps of Breast Cancer–Brain Metastases Development: Tumor Cell Interactions with the Blood–Brain Barrier. International Journal of Molecular Sciences, 2022, 23, 1900.                                                           | 4.1  | 8         |
| 3  | Heparan sulfate dependent binding of plasmatic von Willebrand factor to blood circulating melanoma cells attenuates metastasis. Matrix Biology, 2022, 111, 76-94.                                                                                   | 3.6  | 3         |
| 4  | Inhibition of Tumor–Host Cell Interactions Using Synthetic Heparin Mimetics. ACS Applied Materials<br>& Interfaces, 2021, 13, 7080-7093.                                                                                                            | 8.0  | 14        |
| 5  | Melanoma Associated Chitinase 3-Like 1 Promoted Endothelial Cell Activation and Immune Cell Recruitment. International Journal of Molecular Sciences, 2021, 22, 3912.                                                                               | 4.1  | 9         |
| 6  | The Role of Interleukin-1-Receptor-Antagonist in Bladder Cancer Cell Migration and Invasion.<br>International Journal of Molecular Sciences, 2021, 22, 5875.                                                                                        | 4.1  | 8         |
| 7  | Skin Barriers in Dermal Drug Delivery: Which Barriers Have to Be Overcome and How Can We Measure<br>Them?. Pharmaceutics, 2020, 12, 684.                                                                                                            | 4.5  | 97        |
| 8  | Bladder cancer-derived interleukin-1 converts the vascular endothelium into a pro-inflammatory and pro-coagulatory surface. BMC Cancer, 2020, 20, 1178.                                                                                             | 2.6  | 13        |
| 9  | Nanoparticles and Colloidal Hydrogels of Chitosan–Caseinate Polyelectrolyte Complexes for<br>Drug-Controlled Release Applications. International Journal of Molecular Sciences, 2020, 21, 5602.                                                     | 4.1  | 34        |
| 10 | Urothelial Carcinoma of the Bladder Induces Endothelial Cell Activation and Hypercoagulation.<br>Molecular Cancer Research, 2020, 18, 1099-1109.                                                                                                    | 3.4  | 19        |
| 11 | Differences of the tumour cell glycocalyx affect binding of capsaicin-loaded chitosan nanocapsules.<br>Scientific Reports, 2020, 10, 22443.                                                                                                         | 3.3  | 25        |
| 12 | Unique subsite specificity and potential natural function of a chitosan deacetylase from the human pathogen <i>Cryptococcus neoformans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3551-3559. | 7.1  | 29        |
| 13 | Platelets in Skin Autoimmune Diseases. Frontiers in Immunology, 2019, 10, 1453.                                                                                                                                                                     | 4.8  | 16        |
| 14 | Cellulose Nanofiber-Reinforced Chitosan Hydrogel Composites for Intervertebral Disc Tissue Repair.<br>Biomimetics, 2019, 4, 19.                                                                                                                     | 3.3  | 72        |
| 15 | The Influence of Capsaicin on the Integrity of Microvascular Endothelial Cell Monolayers.<br>International Journal of Molecular Sciences, 2019, 20, 122.                                                                                            | 4.1  | 13        |
| 16 | Chitosan functionalized poly-ε-caprolactone electrospun fibers and 3D printed scaffolds as<br>antibacterial materials for tissue engineering applications. Carbohydrate Polymers, 2018, 191, 127-135.                                               | 10.2 | 52        |
| 17 | Role of the Coagulation System in Genitourinary Cancers: Review. Clinical Genitourinary Cancer, 2018,<br>16, e29-e37.                                                                                                                               | 1.9  | 10        |
| 18 | Physicochemical Characterization of FRET-Labelled Chitosan Nanocapsules and Model Degradation Studies. Nanomaterials, 2018, 8, 846.                                                                                                                 | 4.1  | 9         |

2

CHRISTIAN GORZELANNY

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | The endothelial glycocalyx anchors von Willebrand factor fibers to the vascular endothelium. Blood<br>Advances, 2018, 2, 2347-2357.                                             | 5.2  | 47        |
| 20 | Decreased Invasion of Urothelial Carcinoma of the Bladder by Inhibition of Matrix-Metalloproteinase<br>7. Bladder Cancer, 2018, 4, 67-75.                                       | 0.4  | 11        |
| 21 | Cellular stress induces erythrocyte assembly on intravascular von Willebrand factor strings and promotes microangiopathy. Scientific Reports, 2018, 8, 10945.                   | 3.3  | 19        |
| 22 | Homeostatic nuclear RAGE–ATM interaction is essential for efficient DNA repair. Nucleic Acids<br>Research, 2017, 45, 10595-10613.                                               | 14.5 | 66        |
| 23 | Nanoencapsulated capsaicin changes migration behavior and morphology of madin darby canine kidney cell monolayers. PLoS ONE, 2017, 12, e0187497.                                | 2.5  | 15        |
| 24 | From morphology to biochemical state – intravital multiphoton fluorescence lifetime imaging of<br>inflamed human skin. Scientific Reports, 2016, 6, 22789.                      | 3.3  | 52        |
| 25 | Silver nanoparticle-enriched diamond-like carbon implant modification as a mammalian cell compatible surface with antimicrobial properties. Scientific Reports, 2016, 6, 22849. | 3.3  | 47        |
| 26 | Co-assembly of chitosan and phospholipids into hybrid hydrogels. Pure and Applied Chemistry, 2016, 88,<br>905-916.                                                              | 1.9  | 13        |
| 27 | Hybrid electrospun chitosan-phospholipids nanofibers for transdermal drug delivery. International<br>Journal of Pharmaceutics, 2016, 510, 48-56.                                | 5.2  | 158       |
| 28 | IL17A-Mediated Endothelial Breach Promotes Metastasis Formation. Cancer Immunology Research, 2016,<br>4, 26-32.                                                                 | 3.4  | 40        |
| 29 | The Effect of Capsaicin Derivatives on Tight-Junction Integrity and Permeability of Madin-Darby Canine<br>Kidney Cells. Journal of Pharmaceutical Sciences, 2016, 105, 630-638. | 3.3  | 12        |
| 30 | von Willebrand factor fibers promote cancer-associated platelet aggregation in malignant melanoma of mice and humans. Blood, 2015, 125, 3153-3163.                              | 1.4  | 110       |
| 31 | von Willebrand Factor Directly Interacts With DNA From Neutrophil Extracellular Traps.<br>Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1382-1389.              | 2.4  | 129       |
| 32 | Assessing the Invasive Potential of Bladder Cancer: Development and Validation of a New Preclinical<br>Assay. Journal of Urology, 2013, 189, 1939-1944.                         | 0.4  | 5         |
| 33 | Uptake Kinetics and Nanotoxicity of Silica Nanoparticles Are Cell Type Dependent. Small, 2013, 9,<br>3970-3980.                                                                 | 10.0 | 111       |
| 34 | Ultralarge von Willebrand Factor Fibers Mediate LuminalStaphylococcus aureusAdhesion to an Intact<br>Endothelial Cell Layer Under Shear Stress. Circulation, 2013, 128, 50-59.  | 1.6  | 102       |
| 35 | Cellular Uptake: Uptake Kinetics and Nanotoxicity of Silica Nanoparticles Are Cell Type Dependent<br>(Small 23/2013). Small, 2013, 9, 3906-3906.                                | 10.0 | 5         |
| 36 | Cytotoxicity of silica nanoparticles through exocytosis of von Willebrand factor and necrotic cell death in primary human endothelial cells. Biomaterials, 2011, 32, 8385-8393. | 11.4 | 85        |

| #  | Article                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Human macrophage activation triggered by chitotriosidase-mediated chitin and chitosan degradation.<br>Biomaterials, 2010, 31, 8556-8563. | 11.4 | 92        |