
Yuliang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4209690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cellÂtransition. Nature Cell Biology, 2015, 17, 1523-1535.	10.3	360
2	Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Systems Biology, 2012, 6, 153.	3.0	239
3	Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation. Cell Stem Cell, 2018, 23, 586-598.e8.	11.1	215
4	Fatty Acids Enhance the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Stem Cell Reports, 2019, 13, 657-668.	4.8	187
5	Human Organ-Specific Endothelial Cell Heterogeneity. IScience, 2018, 4, 20-35.	4.1	181
6	Molecular signatures from omics data: From chaos to consensus. Biotechnology Journal, 2012, 7, 946-957.	3.5	101
7	Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium. Stem Cell Reports, 2016, 7, 110-125.	4.8	101
8	Gene-Edited Human Kidney Organoids Reveal Mechanisms of Disease in Podocyte Development. Stem Cells, 2017, 35, 2366-2378.	3.2	101
9	Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts. Nature Communications, 2019, 10, 584.	12.8	100
10	Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E717-E726.	7.1	81
11	Metabolic Control over mTOR-Dependent Diapause-like State. Developmental Cell, 2020, 52, 236-250.e7.	7.0	79
12	TFPa/HADHA is required for fatty acid beta-oxidation and cardiolipin re-modeling in human cardiomyocytes. Nature Communications, 2019, 10, 4671.	12.8	77
13	Metabolic remodeling in early development and cardiomyocyte maturation. Seminars in Cell and Developmental Biology, 2016, 52, 84-92.	5.0	62
14	The Alzheimer's gene SORL1 is a regulator of endosomal traffic and recycling in human neurons. Cellular and Molecular Life Sciences, 2022, 79, 162.	5.4	52
15	Chromatin and Transcriptional Analysis of Mesoderm Progenitor Cells Identifies HOPX as a Regulator of Primitive Hematopoiesis. Cell Reports, 2017, 20, 1597-1608.	6.4	50
16	Development of a novel and economical agar-based non-adherent three-dimensional culture method for enrichment of cancer stem-like cells. Stem Cell Research and Therapy, 2018, 9, 243.	5.5	48
17	Spatial modeling of prostate cancer metabolic gene expression reveals extensive heterogeneity and selective vulnerabilities. Scientific Reports, 2020, 10, 3490.	3.3	43
18	First critical repressive H3K27me3 marks in embryonic stem cells identified using designed protein inhibitor. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10125-10130.	7.1	39

YULIANG WANG

#	Article	IF	CITATIONS
19	Nuclear receptor ERRα and transcription factor ERG form a reciprocal loop in the regulation of TMPRSS2:ERG fusion gene in prostate cancer. Oncogene, 2018, 37, 6259-6274.	5.9	36
20	Conserved Epigenetic Regulatory Logic Infers Genes Governing Cell Identity. Cell Systems, 2020, 11, 625-639.e13.	6.2	31
21	Podocyte Aging: Why and How Getting Old Matters. Journal of the American Society of Nephrology: JASN, 2021, 32, 2697-2713.	6.1	28
22	Nkx2.5 marks angioblasts that contribute to hemogenic endothelium of the endocardium and dorsal aorta. ELife, 2017, 6, .	6.0	27
23	Metabolism as an early predictor of DPSCs aging. Scientific Reports, 2019, 9, 2195.	3.3	26
24	LRH-1 drives hepatocellular carcinoma partially through induction of c-myc and cyclin E1, and suppression of p21. Cancer Management and Research, 2018, Volume 10, 2389-2400.	1.9	24
25	The emerging roles of orphan nuclear receptors in prostate cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2016, 1866, 23-36.	7.4	23
26	Global transcriptomic changes occur in aged mouse podocytes. Kidney International, 2020, 98, 1160-1173.	5.2	23
27	Orphan nuclear receptor TLX contributes to androgen insensitivity in castration-resistant prostate cancer via its repression of androgen receptor transcription. Oncogene, 2018, 37, 3340-3355.	5.9	20
28	Nuclear receptor ERRα contributes to castration-resistant growth of prostate cancer via its regulation of intratumoral androgen biosynthesis. Theranostics, 2020, 10, 4201-4216.	10.0	20
29	Orphan nuclear receptors as regulators of intratumoral androgen biosynthesis in castration-resistant prostate cancer. Oncogene, 2021, 40, 2625-2634.	5.9	19
30	Measuring the Effect of Inter-Study Variability on Estimating Prediction Error. PLoS ONE, 2014, 9, e110840.	2.5	19
31	Multi-study Integration of Brain Cancer Transcriptomes Reveals Organ-Level Molecular Signatures. PLoS Computational Biology, 2013, 9, e1003148.	3.2	16
32	PIXUL-ChIP: integrated high-throughput sample preparation and analytical platform for epigenetic studies. Nucleic Acids Research, 2019, 47, e69-e69.	14.5	16
33	Targeting prostate cancer stem-like cells by an immunotherapeutic platform based on immunogenic peptide-sensitized dendritic cells-cytokine-induced killer cells. Stem Cell Research and Therapy, 2020, 11, 123.	5.5	16
34	Amino acid primed mTOR activity is essential for heart regeneration. IScience, 2022, 25, 103574.	4.1	15
35	Inducible CRISPR genome editing platform in naive human embryonic stem cells reveals JARID2 function in self-renewal. Cell Cycle, 2018, 17, 00-00.	2.6	13
36	Sex differences in transcriptomic profiles in aged kidney cells of renin lineage. Aging, 2018, 10, 606-621.	3.1	12

YULIANG WANG

#	Article	IF	CITATIONS
37	dCas9 fusion to computer-designed PRC2 inhibitor reveals functional TATA box in distal promoter region. Cell Reports, 2022, 38, 110457.	6.4	12
38	microRNAs Regulating Human and Mouse NaÃ⁻ve Pluripotency. International Journal of Molecular Sciences, 2019, 20, 5864.	4.1	11
39	DNA methylation yields epigenetic clues into the diabetic nephropathy of Pima Indians. Kidney International, 2018, 93, 1272-1275.	5.2	9
40	Interplay between orphan nuclear receptors and androgen receptor-dependent or-independent growth signalings in prostate cancer. Molecular Aspects of Medicine, 2021, 78, 100921.	6.4	7
41	Towards understanding androgen receptor-independent prostate cancer: an evolving paradigm. Translational Cancer Research, 2020, 9, 415-417.	1.0	2
42	University of Washington Nathan Shock Center: innovation to advance aging research. GeroScience, 2021, 43, 2161-2165.	4.6	1
43	Podocyte Aging: Why and How Getting Old Matters. Journal of the American Society of Nephrology: JASN, 2021, , ASN.2021-05-0614.	6.1	1
44	Genome-bound enzymes as epigenetic drug targets in cancer. Epigenomics, 2019, 11, 1463-1467.	2.1	0
45	Cardiac Directed Differentiation Using Small Molecule WNT Modulation at Single-Cell Resolution. SSRN Electronic Journal, 0, , .	0.4	0
46	Computer Designed PRC2 Inhibitor, EBdCas9, Reveals Functional TATA Boxes in Distal Promoter Regions. SSRN Electronic Journal, 0, , .	0.4	0
47	Genetic Polymorphisms of Very Important Pharmacogene Variants in the Blang Population from Yunnan Province in China. Pharmacogenomics and Personalized Medicine, 2021, Volume 14, 1647-1660.	0.7	Ο