MarÃ-a Olga Guerrero-Pérez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4208768/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A simultaneous operando FTIR & Raman study of propane ODH mechanism over V-Zr-O catalysts. Catalysis Today, 2022, 387, 197-206.	4.4	10
2	Experimental methods in chemical engineering: <scp>X</scp> â€ray absorption spectroscopy— <scp>XAS</scp> , <scp>XANES</scp> , <scp>EXAFS</scp> . Canadian Journal of Chemical Engineering, 2022, 100, 3-22.	1.7	41
3	Is the "Green Washing―Effect Stronger than Real Scientific Knowledge? Are We Able to Transmit Formal Knowledge in the Face of Marketing Campaigns?. Sustainability, 2022, 14, 285.	3.2	9
4	A new versatile x–y–z electrospinning equipment for nanofiber synthesis in both far and near field. Scientific Reports, 2022, 12, 4872.	3.3	6
5	Research Progress on the Applications of Electrospun Nanofibers in Catalysis. Catalysts, 2022, 12, 9.	3.5	16
6	Experimental methods in chemical engineering: <scp>Raman</scp> spectroscopy. Canadian Journal of Chemical Engineering, 2021, 99, 97-107.	1.7	11
7	The fascinating effect of niobium as catalytic promoting agent. Catalysis Today, 2020, 354, 19-25.	4.4	20
8	SiO2 supported niobium oxides with active acid sites for the catalytic acetalization of glycerol. Catalysis Today, 2020, 356, 80-87.	4.4	16
9	Experimental methods in chemical engineering: Fourier transform infrared spectroscopy—FTIR. Canadian Journal of Chemical Engineering, 2020, 98, 25-33.	1.7	60
10	Enhanced cyclic CO2/N2 separation performance stability on chemically modified N-doped ordered mesoporous carbon. Catalysis Today, 2020, 356, 88-94.	4.4	5
11	Rapid scan FTIR reveals propane (am)oxidation mechanisms over vanadium based catalysts. Journal of Catalysis, 2020, 390, 72-80.	6.2	11
12	Erasmus Mundus EurasiaCat: A successful EU-Asian network for research in Materials Science and Catalysis. Catalysis Today, 2020, 356, 37.	4.4	0
13	Nanomaterials in Dentistry: State of the Art and Future Challenges. Nanomaterials, 2020, 10, 1770.	4.1	26
14	Exploring the possibilities of carbon materials as catalytic supports for partial oxidation reactions. Catalysis Today, 2020, 356, 38-48.	4.4	3
15	<i>Operando</i> Reactor-Cell with Simultaneous Transmission FTIR and Raman Characterization (IRRaman) for the Study of Gas-Phase Reactions with Solid Catalysts. Analytical Chemistry, 2020, 92, 5100-5106.	6.5	20
16	Nanosized-bulk V-containing mixed-oxide catalysts: a strategy for the improvement of the catalytic materials properties. New Journal of Chemistry, 2019, 43, 17661-17669.	2.8	6
17	Electrospun vanadium oxide based submicron diameter fiber catalysts. Part II: Effect of chemical formulation and dopants. Catalysis Today, 2019, 325, 144-150.	4.4	6
18	Electrospun vanadium oxide based submicron diameter fiber catalysts. Part I: Preparation procedure and propane ODH application. Catalysis Today, 2019, 325, 131-143.	4.4	16

#	Article	IF	CITATIONS
19	XANES study of the dynamic states of V-based oxide catalysts under partial oxidation reaction conditions. Catalysis Today, 2019, 336, 210-215.	4.4	7
20	V-Containing Mixed Oxide Catalysts for Reduction–Oxidation-Based Reactions with Environmental Applications: A Short Review. Catalysts, 2018, 8, 564.	3.5	19
21	Supported, bulk and bulk-supported vanadium oxide catalysts: A short review with an historical perspective. Catalysis Today, 2017, 285, 226-233.	4.4	59
22	Synthesis of Vanadium Oxide Nanofibers with Variable Crystallinity and V ⁵⁺ /V ⁴⁺ Ratios. ACS Omega, 2017, 2, 7739-7745.	3.5	58
23	Novel Synthesis Method of porous VPO catalysts with fibrous structure by Electrospinning. Catalysis Today, 2016, 277, 266-273.	4.4	19
24	Propane Versus Ethane Ammoxidation on Mixed Oxide Catalytic Systems: Influence of the Alkane Structure. Catalysis Letters, 2016, 146, 1838-1847.	2.6	6
25	Catalysis by Mixed Oxides. Catalysis Today, 2016, 277, 201.	4.4	2
26	Lignocellulosic waste-derived basic solids and their catalytic applications for the transformation of biomass waste. Catalysis Today, 2015, 257, 229-236.	4.4	11
27	Metrics of acrylonitrile: From biomass vs. petrochemical route. Catalysis Today, 2015, 239, 25-30.	4.4	48
28	Improvements for a Sustainable Distance Education with the New UNED On-Site System for Virtualization of Exams: Malaga Region (AndalucÃa, Spain) as Case Study. World Sustainability Series, 2015, , 309-317.	0.4	0
29	Comments on "Glycerol conversion to acrylonitrile by consecutive dehydration over WO3/TiO2 and ammoxidation over Sb–(Fe,V)–Oâ€, published by Liebig, C., Paul, S., Katryniok, B., Guillon, C., Couturier, JL., Dubois, JL., et al. in Applied Catalysis B: Environmental, 132–133 (2013) 170–182. doi:10.1016/j.apcatb.2012.11.035. Applied Catalysis B: Environmental. 2014. 148-149.601-603	20.2	0
30	Carbon materials as template for the preparation of mixed oxides with controlled morphology and porous structure. Catalysis Today, 2014, 227, 233-241.	4.4	18
31	Performance of NiO and Ni–Nb–O active phases during the ethane ammoxidation into acetonitrile. Catalysis Science and Technology, 2013, 3, 3173.	4.1	26
32	Niobia-Supported Nanoscaled Bulk-NiO Catalysts for the Ammoxidation of Ethane into Acetonitrile. Catalysis Letters, 2013, 143, 31-42.	2.6	16
33	Highly active and selective supported bulk nanostructured MoVNbTeO catalysts for the propane ammoxidation process. Catalysis Today, 2012, 192, 67-71.	4.4	13
34	Lignocellulosic-derived mesoporous materials: An answer to manufacturing non-expensive catalysts useful for the biorefinery processes. Catalysis Today, 2012, 195, 155-161.	4.4	30
35	Corrigendum to "Molecular structure performance relationships at the surface of functional materials―(preface) [Catal. Today 187 (2012) 1]. Catalysis Today, 2012, 191, 174.	4.4	0
36	Niobiosilica Materials as Attractive Supports for Sb–V–O Catalysts. Topics in Catalysis, 2012, 55, 837-845.	2.8	1

#	Article	IF	CITATIONS
37	On the Nature of Surface Vanadium Oxide Species on Carbons. Journal of Physical Chemistry C, 2012, 116, 20396-20403.	3.1	14
38	Theoretical and Experimental Study of Light Hydrocarbon Ammoxidation and Oxidative Dehydrogenation on (110)-VSbO ₄ Surfaces. Journal of Physical Chemistry C, 2012, 116, 9132-9141.	3.1	23
39	Spectroscopic surface characterization of MoVNbTe nanostructured catalysts for the partial oxidation of propane. Catalysis Today, 2012, 187, 195-200.	4.4	16
40	Molecular structure performance relationships at the surface of functional materials. Catalysis Today, 2012, 187, 1.	4.4	1
41	In situ Raman studies during sulfidation, and operando Raman-GC during ammoxidation reaction using nickel-containing catalysts: a valuable tool to identify the transformations of catalytic species. Physical Chemistry Chemical Physics, 2011, 13, 9260.	2.8	13
42	Lignocellulosic-derived catalysts for the selective oxidation of propane. Catalysis Communications, 2011, 12, 989-992.	3.3	28
43	Structural changes occurring at the surface of alumina-supported nanoscaled Mo–V–Nb–(Te)–O catalytic system during the selective oxidation of propane to acrylic acid. Applied Catalysis A: General, 2011, 406, 34-42.	4.3	17
44	Tuning of Active Sites in NiNbO Catalysts for the Direct Conversion of Ethane to Acetonitrile or Ethylene. ChemCatChem, 2011, 3, 1637-1645.	3.7	14
45	Nanoscaled rutile active phase in Mo–V–Nb–O supported catalysts for the oxidation of propane to acrylic acid. Applied Catalysis A: General, 2010, 375, 55-62.	4.3	29
46	Designing new V–Sb–O based catalysts on mesoporous supports for nitriles production. Applied Catalysis A: General, 2010, 380, 95-104.	4.3	13
47	Correlation between theoretical and experimental investigations of the ammonia adsorption process on the (110)-VSbO4 surface. Catalysis Today, 2010, 158, 178-185.	4.4	23
48	Surface active sites in alumina-supported MoVNbTeO oxide catalysts. Catalysis Today, 2010, 158, 139-145.	4.4	20
49	Niobium as a Catalytic Promoting Agent. Recent Patents on Chemical Engineering, 2010, 1, 201-208.	0.5	3
50	Recent Inventions in Glycerol Transformations and Processing. Recent Patents on Chemical Engineering, 2010, 2, 11-21.	0.5	25
51	Role of V in supported V–Sb–O catalysts for the ammoxidation of propane to acrylonitrile: Multilayered VOx/SbOx/Al2O3 catalysts. Catalysis Today, 2009, 142, 152-157.	4.4	5
52	Niobium as promoting agent for selective oxidation reactions. Catalysis Today, 2009, 142, 245-251.	4.4	47
53	Mesostructured mixed Mo–V–Nb oxides for propane ammoxidation. Catalysis Communications, 2009, 10, 416-420.	3.3	13
54	Direct ammoxidation of ethane: An approach to tackle the worldwide shortage of acetonitrile. Catalysis Communications, 2009, 10, 1555-1557.	3.3	40

#	Article	IF	CITATIONS
55	Effect of Mg in Alumina-Supported Sb–V–O Catalysts for the Ammoxidation of Propane into Acrylonitrile. Catalysis Letters, 2008, 125, 192-196.	2.6	6
56	M1 to M2 Phase Transformation and Phase Cooperation in Bulk Mixed Metal Mo–V–M–O (M=Te, Nb) Catalysts for Selective Ammoxidation of Propane. Topics in Catalysis, 2008, 50, 43-51.	2.8	65
57	New Reaction: Conversion of Glycerol into Acrylonitrile. ChemSusChem, 2008, 1, 511-513.	6.8	76
58	Effect of tellurium addition to supported Mo-V-O catalysts for the ammoxidation of propane to acrylonitrile. Catalysis Today, 2008, 133-135, 919-924.	4.4	7
59	Sb–V–O-based catalysts for the ammoxidation of propane with a fluidized bed reactor. Catalysis Today, 2008, 139, 202-208.	4.4	10
60	Alumina supported Mo–V–Te–O catalysts for the ammoxidation of propane to acrylonitrile. Applied Catalysis A: General, 2008, 341, 119-126.	4.3	15
61	Nature of Catalytic Active Sites for Sbâ^'Vâ^'O Mixed Metal Oxides. Journal of Physical Chemistry C, 2008, 112, 16858-16863.	3.1	19
62	Support Effect on the Structure and Reactivity of VSbO ₄ Catalysts for Propane Ammoxidation to Acrylonitrile. Chemistry of Materials, 2007, 19, 6621-6628.	6.7	30
63	Operando Ramanâ^'GC Study of Supported Alumina Sb- and V-Based Catalysts:  Effect of Sb/V Molar Ratio and Total Sb+V Coverage in the Structure of Catalysts during Propane Ammoxidation. Journal of Physical Chemistry C, 2007, 111, 1315-1322.	3.1	33
64	Role of Nb in Rutile-type Metal Antimonates for Propane Ammoxidation. Studies in Surface Science and Catalysis, 2007, 172, 145-148.	1.5	2
65	MS-FTIR reduction stage study of NSR catalysts. Catalysis Today, 2007, 126, 162-168.	4.4	19
66	Selective destruction of nitrogen-containing organic volatile compounds over Sb–V–O catalysts. Applied Catalysis B: Environmental, 2007, 71, 85-93.	20.2	13
67	Operando Raman study of propane oxidation over alumina-supported V–Mo–W–O catalysts. Catalysis Today, 2007, 126, 177-183.	4.4	19
68	A Study about the Propane Ammoxidation to Acrylonitrile with an Alumina-Supported Sbâ^'Vâ^'O Catalyst. Industrial & Engineering Chemistry Research, 2006, 45, 4537-4543.	3.7	33
69	Effect of cellulose content on structural and transport parameters across dense cellophane membranes. Desalination, 2006, 200, 15-17.	8.2	3
70	From conventional in situ to operando studies in Raman spectroscopy. Catalysis Today, 2006, 113, 48-57.	4.4	68
71	Ammoxidation of propane over V-Sb and V-Sb-Nb mixed oxides. Applied Catalysis A: General, 2006, 298, 1-7.	4.3	38
72	Tunning the Nb addition to Sb-V-O catalysts for an efficient promotion of the ammoxidation of propane to acrylonitrile. Catalysis Today, 2006, 118, 366-372.	4.4	23

#	Article	IF	CITATIONS
73	Characterization and FT-IR study of nanostructured alumina-supported V-Mo-W-O catalysts. Catalysis Today, 2006, 118, 360-365.	4.4	20
74	Effect of synthesis method on stabilized nano-scaled Sb–V–O catalysts for the ammoxidation of propane to acrylonitrile. Topics in Catalysis, 2006, 41, 43-53.	2.8	32
75	Rutile-type metal (Cr, V) niobates as catalysts for propane ammoxidation to nitriles: In situ characterization and operando reactivity. Catalysis Today, 2006, 112, 12-16.	4.4	23
76	Phase transformations in mesostructured VPO/surfactant composites. Microporous and Mesoporous Materials, 2004, 71, 57-63.	4.4	15
77	Bulk mixed Mo–V–Te–O catalysts for propane oxidation to acrylic acid. Applied Catalysis A: General, 2004, 274, 123-132.	4.3	67
78	Raman?GC studies of alumina-supported Sb-V-O catalysts and role of the preparation method. Catalysis Today, 2004, 96, 265-272.	4.4	40
79	Catalytic properties of mixed Mo-V-Sb-Nb-O oxides catalysts for the ammoxidation of propane to acrylonitrile. Applied Catalysis A: General, 2004, 260, 93-99.	4.3	43
80	Bulk structure and catalytic properties of mixed Mo–V–Sb–Nb oxides forÂselective propane oxidation to acrylic acid. Journal of Catalysis, 2003, 215, 108-115.	6.2	49
81	Effect of the oxide support on the propane ammoxidation with Sb–V–O-based catalysts. Catalysis Today, 2003, 78, 387-396.	4.4	38
82	Reduction of chromia/alumina catalyst monitored by DRIFTS-mass spectrometry and TPR-Raman spectroscopy. Physical Chemistry Chemical Physics, 2003, 5, 4371-4377.	2.8	36
83	Niobia-supported Sb–V–O catalysts for propane ammoxidation: effect of catalyst composition on the selectivity to acrylonitrile. Physical Chemistry Chemical Physics, 2003, 5, 4032-4039.	2.8	25
84	Operando Raman study of alumina-supported Sb–V–O catalyst during propane ammoxidation to acrylonitrile with on-line activity measurement. Chemical Communications, 2002, , 1292-1293.	4.1	104
85	Raman spectroscopy during catalytic operations with on-line activity measurement (operando) Tj ETQq1 1 0.784 materials. Journal of Materials Chemistry, 2002, 12, 3337-3342.	1314 rgBT 6.7	/Overlock 10 116
86	Effect of Sb/V Ratio and of Sb + V Coverage on the Molecular Structure and Activity of Alumina-Supported Sb–V–O Catalysts for the Ammoxidation of Propane to Acrylonitrile. Journal of Catalysis, 2002, 206, 339-348.	6.2	94