Yang Xing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4208628/publications.pdf Version: 2024-02-01

VANC XINC

#	Article	IF	CITATIONS
1	Multiscale Human Activity Recognition and Anticipation Network. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 451-465.	11.3	3
2	Cooperative Decision Making of Connected Automated Vehicles at Multi-Lane Merging Zone: A Coalitional Game Approach. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 3829-3841.	8.0	51
3	Hybrid-Learning-Based Driver Steering Intention Prediction Using Neuromuscular Dynamics. IEEE Transactions on Industrial Electronics, 2022, 69, 1750-1761.	7.9	15
4	Data-Driven Estimation of Driver Attention Using Calibration-Free Eye Gaze and Scene Features. IEEE Transactions on Industrial Electronics, 2022, 69, 1800-1808.	7.9	45
5	Human–Machine Adaptive Shared Control for Safe Driving Under Automation Degradation. IEEE Intelligent Transportation Systems Magazine, 2022, 14, 53-66.	3.8	23
6	Risk Assessment and Mitigation in Local Path Planning for Autonomous Vehicles With LSTM Based Predictive Model. IEEE Transactions on Automation Science and Engineering, 2022, 19, 2738-2749.	5.2	28
7	CogEmoNet: A Cognitive-Feature-Augmented Driver Emotion Recognition Model for Smart Cockpit. IEEE Transactions on Computational Social Systems, 2022, 9, 667-678.	4.4	32
8	Multi-Agent Trajectory Prediction With Heterogeneous Edge-Enhanced Graph Attention Network. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 9554-9567.	8.0	73
9	The Identification of Non-Driving Activities with Associated Implication on the Take-Over Process. Sensors, 2022, 22, 42.	3.8	5
10	Future Directions of Intelligent Vehicles: Potentials, Possibilities, and Perspectives. IEEE Transactions on Intelligent Vehicles, 2022, 7, 7-10.	12.7	123
11	Multi-Modal Sensor Fusion-Based Deep Neural Network for End-to-End Autonomous Driving With Scene Understanding. IEEE Sensors Journal, 2021, 21, 11781-11790.	4.7	66
12	Cyber-Physical-Social System for Parallel Driving: From Concept to Application. IEEE Intelligent Transportation Systems Magazine, 2021, 13, 59-69.	3.8	10
13	Human–Machine Collaboration for Automated Driving Using an Intelligent Twoâ€Phase Haptic Interface. Advanced Intelligent Systems, 2021, 3, 2000229.	6.1	25
14	Human-Like Decision Making for Autonomous Driving: A Noncooperative Game Theoretic Approach. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 2076-2087.	8.0	127
15	Toward Safe and Personalized Autonomous Driving: Decision-Making and Motion Control With DPF and CDT Techniques. IEEE/ASME Transactions on Mechatronics, 2021, 26, 611-620.	5.8	39
16	Decision Making of Connected Automated Vehicles at an Unsignalized Roundabout Considering Personalized Driving Behaviours. IEEE Transactions on Vehicular Technology, 2021, 70, 4051-4064.	6.3	37
17	Deep convolutional neural network-based Bernoulli heatmap for head pose estimation. Neurocomputing, 2021, 436, 198-209.	5.9	28
18	Toward human-vehicle collaboration: Review and perspectives on human-centered collaborative automated driving. Transportation Research Part C: Emerging Technologies, 2021, 128, 103199.	7.6	60

YANG XING

#	Article	IF	CITATIONS
19	Toward Safe and Smart Mobility: Energy-Aware Deep Learning for Driving Behavior Analysis and Prediction of Connected Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2021, 22, 4267-4280.	8.0	40
20	Multi-scale driver behavior modeling based on deep spatial-temporal representation for intelligent vehicles. Transportation Research Part C: Emerging Technologies, 2021, 130, 103288.	7.6	21
21	Driving conditions-driven energy management strategies for hybrid electric vehicles: A review. Renewable and Sustainable Energy Reviews, 2021, 151, 111521.	16.4	65
22	Graph and Recurrent Neural Network-based Vehicle Trajectory Prediction For Highway Driving. , 2021, ,		27
23	Transfer Learning for Driver Model Adaptation in Lane-Changing Scenarios Using Manifold Alignment. IEEE Transactions on Intelligent Transportation Systems, 2020, 21, 3281-3293.	8.0	35
24	Personalized Vehicle Trajectory Prediction Based on Joint Time-Series Modeling for Connected Vehicles. IEEE Transactions on Vehicular Technology, 2020, 69, 1341-1352.	6.3	122
25	Dynamic State Estimation for the Advanced Brake System of Electric Vehicles by Using Deep Recurrent Neural Networks. IEEE Transactions on Industrial Electronics, 2020, 67, 9536-9547.	7.9	67
26	Decision-making in driver-automation shared control: A review and perspectives. IEEE/CAA Journal of Automatica Sinica, 2020, 7, 1289-1307.	13.1	64
27	Pattern Recognition and Characterization of Upper Limb Neuromuscular Dynamics during Driver-Vehicle Interactions. IScience, 2020, 23, 101541.	4.1	9
28	An ensemble deep learning approach for driver lane change intention inference. Transportation Research Part C: Emerging Technologies, 2020, 115, 102615.	7.6	115
29	Special Issue on Internet of Things for Connected Automated Driving. IEEE Internet of Things Journal, 2020, 7, 3678-3680.	8.7	2
30	Energy oriented driving behavior analysis and personalized prediction of vehicle states with joint time series modeling. Applied Energy, 2020, 261, 114471.	10.1	55
31	Cyber-Physical Vehicle Systems: Methodology and Applications. Synthesis Lectures on Advances in Automotive Technology, 2020, 4, 1-85.	0.5	1
32	Design of Integrated Road Perception and Lane Detection System for Driver Intention Inference. , 2020, , 77-98.		1
33	Driver Behavior Recognition in Driver Intention Inference Systems. , 2020, , 99-134.		3
34	Longitudinal Driver Intention Inference. , 2020, , 157-191.		3
35	Driver Lane-Change Intention Inference. , 2020, , 193-233.		0
36	An Integrated Framework of Decision Making and Motion Planning for Autonomous Vehicles Considering Social Behaviors. IEEE Transactions on Vehicular Technology, 2020, 69, 14458-14469.	6.3	86

YANG XING

#	Article	IF	CITATIONS
37	Human-Like Lane-Change Decision Making for Automated Driving with a Game Theoretic Approach. , 2020, , .		6
38	A Two-Stage Learning Framework for Driver Lane Change Intention Inference. IFAC-PapersOnLine, 2020, 53, 638-643.	0.9	7
39	Multi-Scale Driver Behaviors Reasoning System for Intelligent Vehicles Based on a Joint Deep Learning Framework. , 2020, , .		4
40	Continuous Driver Steering Intention Prediction Considering Neuromuscular Dynamics and Driving Postures. , 2020, , .		1
41	Driver-Automation Collaboration for Automated Vehicles: A Review of Human-Centered Shared Control. , 2020, , .		11
42	Interaction-Aware Trajectory Prediction of Connected Vehicles using CNN-LSTM Networks. , 2020, , .		39
43	Virtual-to-Real Knowledge Transfer for Driving Behavior Recognition: Framework and a Case Study. IEEE Transactions on Vehicular Technology, 2019, 68, 6391-6402.	6.3	31
44	Driver Lane Change Intention Inference for Intelligent Vehicles: Framework, Survey, and Challenges. IEEE Transactions on Vehicular Technology, 2019, 68, 4377-4390.	6.3	166
45	Driver Activity Recognition for Intelligent Vehicles: A Deep Learning Approach. IEEE Transactions on Vehicular Technology, 2019, 68, 5379-5390.	6.3	238
46	Dynamic integration and online evaluation of visionâ€based lane detection algorithms. IET Intelligent Transport Systems, 2019, 13, 55-62.	3.0	26
47	Identification and Analysis of Driver Postures for In-Vehicle Driving Activities and Secondary Tasks Recognition. IEEE Transactions on Computational Social Systems, 2018, 5, 95-108.	4.4	109
48	Advances in Vision-Based Lane Detection: Algorithms, Integration, Assessment, and Perspectives on ACP-Based Parallel Vision. IEEE/CAA Journal of Automatica Sinica, 2018, 5, 645-661.	13.1	126
49	Levenberg–Marquardt Backpropagation Training of Multilayer Neural Networks for State Estimation of a Safety-Critical Cyber-Physical System. IEEE Transactions on Industrial Informatics, 2018, 14, 3436-3446.	11.3	251
50	Driver workload estimation using a novel hybrid method of error reduction ratio causality and support vector machine. Measurement: Journal of the International Measurement Confederation, 2018, 114, 390-397.	5.0	41
51	End-to-End Driving Activities and Secondary Tasks Recognition Using Deep Convolutional Neural Network and Transfer Learning. , 2018, , .		23
52	Hybrid-Learning-Based Classification and Quantitative Inference of Driver Braking Intensity of an Electrified Vehicle. IEEE Transactions on Vehicular Technology, 2018, , 1-1.	6.3	58
53	Recognizing Driver Braking Intention with Vehicle Data Using Unsupervised Learning Methods. , 0, , .		7
54	A Personalized Deep Learning Approach for Trajectory Prediction of Connected Vehicles. , 0, , .		3