Lars Duelund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4208626/publications.pdf

Version: 2024-02-01

42 papers 1,698 citations

³⁹⁴²⁸⁶
19
h-index

39 g-index

43 all docs 43 does citations

43 times ranked

 $\begin{array}{c} 2312 \\ \text{citing authors} \end{array}$

#	Article	IF	CITATIONS
1	Free Energy of Spin-Crossover Complexes Calculated with Density Functional Methods. Inorganic Chemistry, 2001, 40, 2201-2203.	1.9	266
2	Absence of Fluid-Ordered/Fluid-Disordered Phase Coexistence in Ceramide/POPC Mixtures Containing Cholesterol. Biophysical Journal, 2006, 90, 4437-4451.	0.2	157
3	On the human consumption of the red seaweed dulse (Palmaria palmata (L.) Weber & Mohr). Journal of Applied Phycology, 2013, 25, 1777-1791.	1.5	153
4	Triglyceride Blisters in Lipid Bilayers: Implications for Lipid Droplet Biogenesis and the Mobile Lipid Signal in Cancer Cell Membranes. PLoS ONE, 2010, 5, e12811.	1.1	138
5	Understanding Detergent Effects on Lipid Membranes: A Model Study of Lysolipids. Biophysical Journal, 2010, 98, 2199-2205.	0.2	89
6	Flavour of fermented fish, insect, game, and pea sauces: Garum revisited. International Journal of Gastronomy and Food Science, 2017, 9, 16-28.	1.3	75
7	Seaweeds for umami flavour in the New Nordic Cuisine. Flavour, 2012, 1, .	2.3	71
8	Anisotropic Nuclear Inelastic Scattering of an Iron(II) Molecular Crystal. Physical Review Letters, 2001, 86, 1351-1354.	2.9	70
9	Umami taste, free amino acid composition, and volatile compounds of brown seaweeds. Journal of Applied Phycology, 2019, 31, 1213-1232.	1.5	60
10	Solid and solution state structures of mono- and di-nuclear iron(III) complexes of related hexadentate and pentadentate aminopyridyl ligands. Dalton Transactions RSC, 2001, , 152-156.	2.3	56
11	Substituent Effects on the Spin-Transition Temperature in Complexes with Tris(pyrazolyl) Ligands. Monatshefte Für Chemie, 2003, 134, 295-306.	0.9	48
12	Contents of capsaicinoids in chillies grown in Denmark. Food Chemistry, 2017, 221, 913-918.	4.2	48
13	Buffers Affect the Bending Rigidity of Model Lipid Membranes. Langmuir, 2014, 30, 13-16.	1.6	46
14	Inclusion of Terpenoid Plant Extracts in Lipid Bilayers Investigated by Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2010, 114, 15825-15831.	1.2	44
15	Influence of the Active Compounds of <i>Perilla frutescens</i> Leaves on Lipid Membranes. Journal of Natural Products, 2012, 75, 160-166.	1.5	29
16	Mechanics and dynamics of triglyceride-phospholipid model membranes: Implications for cellular properties and function. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1947-1956.	1.4	26
17	Sphingomyelinase D Activity in Model Membranes: Structural Effects of in situ Generation of Ceramide-1-Phosphate. PLoS ONE, 2012, 7, e36003.	1.1	25
18	Composition, structure and properties of POPC–triolein mixtures. Evidence of triglyceride domains in phospholipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1909-1917.	1.4	22

#	Article	IF	CITATIONS
19	Membrane Restructuring by Phospholipase A2 Is Regulated by the Presence of Lipid Domains. Biophysical Journal, 2011, 101, 90-99.	0.2	19
20	Is a constant low-entropy process at the root of glycolytic oscillations?. Journal of Biological Physics, 2018, 44, 419-431.	0.7	19
21	Vitamin D Depletion in Pregnancy Decreases Survival Time, Oxygen Saturation, Lung Weight and Body Weight in Preterm Rat Offspring. PLoS ONE, 2016, 11, e0155203.	1.1	19
22	Electron paramagnetic resonance characteristics of some non-heme low-spin iron(III) complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2000, 56, 331-340.	2.0	18
23	Acute cholesterol depletion leads to net loss of the organic osmolyte taurine in Ehrlich Lettré tumor cells. Amino Acids, 2010, 39, 1521-1536.	1.2	18
24	Propofol modulates the lipid phase transition and localizes near the headgroup of membranes. Chemistry and Physics of Lipids, 2013, 175-176, 84-91.	1.5	18
25	On the gastrophysics of jellyfish preparation. International Journal of Gastronomy and Food Science, 2017, 9, 34-38.	1.3	18
26	The quest for umami: Can sous vide contribute?. International Journal of Gastronomy and Food Science, 2018, 13, 129-133.	1.3	18
27	Inhibition of cholesterol transport in an intestine cell model by pine-derived phytosterols. Chemistry and Physics of Lipids, 2016, 200, 62-73.	1.5	17
28	Effects of seaweed sterols fucosterol and desmosterol on lipid membranes. Chemistry and Physics of Lipids, 2017, 205, 1-10.	1.5	17
29	Consumer perception of snack sausages enriched with umami-tasting meat protein hydrolysates. Meat Science, 2019, 150, 65-76.	2.7	17
30	A Simplified Chromatographic Approach to Purify Commercially Available Bovine Submaxillary Mucins (BSM). Preparative Biochemistry and Biotechnology, 2015, 45, 84-99.	1.0	16
31	Polyaromatic hydrocarbons do not disturb liquid–liquid phase coexistence, but increase the fluidity of model membranes. Chemistry and Physics of Lipids, 2014, 184, 18-24.	1.5	14
32	Odour-induced umami $\hat{a}\in$ Olfactory contribution to umami taste in seaweed extracts (dashi) by sensory interactions. International Journal of Gastronomy and Food Science, 2021, 25, 100363.	1.3	13
33	Phase coexistence in a triolein–phosphatidylcholine system. Implications for lysosomal membrane properties. Chemistry and Physics of Lipids, 2010, 163, 218-227.	1.5	8
34	Label free noninvasive spatially resolved NaCl concentration measurements using Coherent Anti-Stokes Raman Scattering microscopy applied to butter. Food Chemistry, 2019, 297, 124881.	4.2	7
35	Effects of seaweed sterols fucosterol And desmosterol on lipid membranes. Biophysical Journal, 2009, 96, 606a.	0.2	6
36	Biophysical Evaluation of Food Decontamination Effects on Tissue and Bacteria. Food Biophysics, 2011, 6, 170-182.	1.4	6

#	Article	IF	CITATIONS
37	Data for the size of cholesterol-fat micelles as a function of bile salt concentration and the physico-chemical properties of six liquid experimental pine-derived phytosterol formulations in a cholesterol-containing artificial intestine fluid. Data in Brief, 2017, 10, 478-481.	0.5	3
38	The Microscopic Structure of Crunchy and Crispy Jellyfish. Biophysical Journal, 2018, 114, 538a.	0.2	3
39	(1,1,1-Tris{[N-(2-pyridylmethyl)-N-methylamino]methyl}ethane-κ6N)manganese(II) bis(perchlorate). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m1177-m1178.	0.2	O
40	Dimetallic functionalities in liposome bilayers. Supramolecular Chemistry, 2015, 27, 642-653.	1.5	0
41	Validation and comparison of ammonia measurement techniques used to determine ammonia absorbed by passive absorption samplers. Canadian Journal of Soil Science, 0, , 1-4.	0.5	0
42	Substituent Effects on the Spin-Transition Temperature in Complexes with Tris(pyrazolyl) Ligands. , 2003, , 179-190.		0