Facundo Ballester

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4208416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Vivo Verification of Treatment Source Dwell Times in Brachytherapy of Postoperative Endometrial Carcinoma: A Feasibility Study. Journal of Personalized Medicine, 2022, 12, 911.	1.1	1
2	A Monte Carlo study of the relative biological effectiveness in surface brachytherapy. Medical Physics, 2022, 49, 5576-5588.	1.6	0
3	A study of Type B uncertainties associated with the photoelectric effect in low-energy Monte Carlo simulations. Physics in Medicine and Biology, 2021, 66, 105014.	1.6	9
4	On the use of the absorbed depthâ€dose measurements in the beam calibration of a surface electronic highâ€doseâ€rate brachytherapy unit, a Monte Carloâ€based study. Medical Physics, 2020, 47, 693-702.	1.6	2
5	Surface brachytherapy: Joint report of the AAPM and the GECâ€ESTRO Task Group No. 253. Medical Physics, 2020, 47, e951-e987.	1.6	22
6	Depth-dose measurement corrections for the surface electronic brachytherapy beams of an Esteya® unit: a Monte Carlo study. Physics in Medicine and Biology, 2020, 65, 245026.	1.6	2
7	Monte Carlo calculation of beam quality correction factors for PTW cylindrical ionization chambers in photon beams. Physics in Medicine and Biology, 2020, 65, 205005.	1.6	7
8	GEC-ESTRO ACROP recommendations on calibration and traceability of LE-LDR photon-emitting brachytherapy sources at the hospital level. Radiotherapy and Oncology, 2019, 135, 120-129.	0.3	8
9	A Monte Carloâ€based dosimetric characterization of Esteya [®] , an electronic surface brachytherapy unit. Medical Physics, 2019, 46, 356-369.	1.6	5
10	Calibration of a thermoluminescent dosimeter worn over lead aprons in fluoroscopy guided procedures. Journal of Radiological Protection, 2018, 38, 549-564.	0.6	3
11	Peripheral dose around a mobile linac for intraoperative radiotherapy: radiation protection aspects. Journal of Radiological Protection, 2018, 38, 1393-1411.	0.6	3
12	Correction factors for ionization chamber measurements with the â€~Valencia' and â€~large field Valencia' brachytherapy applicators. Physics in Medicine and Biology, 2018, 63, 125004.	1.6	2
13	Evaluation of the shielding in a treatment room with an electronic brachytherapy unit. Journal of Radiological Protection, 2017, 37, N5-N12.	0.6	5
14	Towards clinical application of RayStretch for heterogeneity corrections in LDR permanent 125 I prostate brachytherapy. Brachytherapy, 2017, 16, 616-623.	0.2	1
15	Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy. Physics in Medicine and Biology, 2017, 62, 146-164.	1.6	5
16	A generic TGâ€186 shielded applicator for commissioning modelâ€based dose calculation algorithms for highâ€doseâ€rate ¹⁹² Ir brachytherapy. Medical Physics, 2017, 44, 5961-5976.	1.6	34
17	Prescription Depth in Surface Skin Brachytherapy. Brachytherapy, 2017, 16, S50-S51.	0.2	2
18	Supplement 2 for the 2004 update of the <scp>AAPM</scp> Task Group No. 43 Report: Joint recommendations by the <scp>AAPM</scp> and <scp>GEC</scp> â€ <scp>ESTRO</scp> . Medical Physics, 2017, 44, e297-e338.	1.6	48

#	Article	IF	CITATIONS
19	Commissioning and quality assurance procedures for the HDR Valencia skin applicators. Journal of Contemporary Brachytherapy, 2016, 5, 441-447.	0.4	12
20	Novel simple templates for reproducible positioning of skin applicators in brachytherapy. Journal of Contemporary Brachytherapy, 2016, 4, 344-348.	0.4	12
21	Response to "Comment on â€~Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for lowâ€energy surface brachytherapy dosimetry' ―[Med. Phys. 42 , 4954–4964 (2015)]. Medical Physics, 2016, 43, 2007-2008.	1.6	0
22	Design and characterization of a new highâ€doseâ€rate brachytherapy Valencia applicator for larger skin lesions. Medical Physics, 2016, 43, 1639-1648.	1.6	15
23	Transit dose comparisons for ⁶⁰ Co and ¹⁹² Ir HDR sources. Journal of Radiological Protection, 2016, 36, 858-864.	0.6	2
24	Technical Note: Dosimetry of Leipzig and Valencia applicators without the plastic cap. Medical Physics, 2016, 43, 2087-2090.	1.6	17
25	VoxelMages: a general-purpose graphical interface for designing geometries and processing DICOM images for PENELOPE. Applied Radiation and Isotopes, 2016, 118, 251-257.	0.7	0
26	Study of CT/MRI mutual information based registration applied in brachytherapy. , 2016, , .		0
27	Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for lowâ€energy surface brachytherapy dosimetry. Medical Physics, 2015, 42, 4954-4964.	1.6	13
28	Commissioning and periodic tests of the Esteya \hat{A}^{\circledast} electronic brachytherapy system. Journal of Contemporary Brachytherapy, 2015, 2, 189-195.	0.4	17
29	A practical MRI-based reconstruction method for a new endocavitary and interstitial gynaecological template. Journal of Contemporary Brachytherapy, 2015, 5, 407-414.	0.4	8
30	Assaying multiple 125 I seeds with the well-ionization chamber SourceCheck 4Ï€ 33005 and a new insert. Journal of Contemporary Brachytherapy, 2015, 6, 492-496.	0.4	3
31	A generic high-dose rate ¹⁹² Ir brachytherapy source for evaluation of model-based dose calculations beyond the TG-43 formalism. Medical Physics, 2015, 42, 3048-3062.	1.6	64
32	Evaluation of lens absorbed dose with Cone Beam IGRT procedures. Journal of Radiological Protection, 2015, 35, N33-N41.	0.6	0
33	Dosimetric characterization of two radium sources for retrospective dosimetry studies. Medical Physics, 2015, 42, 2132-2142.	1.6	3
34	A simple analytical method for heterogeneity corrections in low dose rate prostate brachytherapy. Physics in Medicine and Biology, 2015, 60, 5455-5469.	1.6	3
35	Fetal dose measurements and shielding efficiency assessment in a custom setup of 192Ir brachytherapy for a pregnant woman with breast cancer. Physica Medica, 2015, 31, 286-292.	0.4	3
36	Air-kerma evaluation at the maze entrance of HDR brachytherapy facilities. Journal of Radiological Protection, 2014, 34, 741-753.	0.6	1

#	Article	IF	CITATIONS
37	Brachytherapy structural shielding calculations using Monte Carlo generated, monoenergetic data. Medical Physics, 2014, 41, 043901.	1.6	2
38	Depth determination of skin cancers treated with superficial brachytherapy: ultrasound vs. histopathology. Journal of Contemporary Brachytherapy, 2014, 4, 356-361.	0.4	21
39	Dosimetric characteristics of a new unit for electronic skin brachytherapy. Journal of Contemporary Brachytherapy, 2014, 1, 45-53.	0.4	47
40	Limitations of the TGâ€43 formalism for skin highâ€doseâ€rate brachytherapy dose calculations. Medical Physics, 2014, 41, 021703.	1.6	27
41	Dosimetric perturbations of a lead shield for surface and interstitial high-dose-rate brachytherapy. Journal of Radiological Protection, 2014, 34, 297-311.	0.6	10
42	Review of clinical brachytherapy uncertainties: Analysis guidelines of GEC-ESTRO and the AAPM. Radiotherapy and Oncology, 2014, 110, 199-212.	0.3	243
43	Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma. Medical Physics, 2013, 40, 033901.	1.6	17
44	Monte Carlo dosimetric study of the medium dose rate CSM40 source. Applied Radiation and Isotopes, 2013, 82, 283-288.	0.7	9
45	Radiation leakage study for the Valencia applicators. Physica Medica, 2013, 29, 60-64.	0.4	17
46	Impact of the Tiloop Bra mesh in CT images and dose delivery in breast radiotherapy. Journal of Applied Clinical Medical Physics, 2012, 13, 13-19.	0.8	5
47	Reply to "Comment on â€~Correspondence factor for Nucletron surface applicators'―[Med. Phys. 39, 2947-2948 (2012)]. Medical Physics, 2012, 39, 2310-2311.	1.6	5
48	Dosimetry comparison between TG-43 and Monte Carlo calculations using the Freiburg flap for skin high-dose-rate brachytherapy. Brachytherapy, 2012, 11, 528-535.	0.2	18
49	QA of dynamic MLC based on EPID portal dosimetry. Physica Medica, 2012, 28, 262-268.	0.4	22
50	Dose calculation for photonâ€emitting brachytherapy sources with average energy higher than 50 keV: Report of the AAPM and ESTRO. Medical Physics, 2012, 39, 2904-2929.	1.6	219
51	Monte Carlo dosimetric study of the Flexisource Co-60 high dose rate source. Journal of Contemporary Brachytherapy, 2012, 1, 34-44.	0.4	25
52	Physics Contributions I-125 seed calibration using the SeedSelectron® afterloader: a practical solution to fulfill AAPM-ESTRO recommendations. Journal of Contemporary Brachytherapy, 2012, 1, 21-28.	0.4	6
53	Dosimetry revisited for the HDR brachytherapy source model mHDRâ€v2. Medical Physics, 2011, 38, 487-494.	1.6	75
54	Physics Contributions Dosimetric evaluation of internal shielding in a High Dose Rate skin applicator. Journal of Contemporary Brachytherapy, 2011, 1, 32-38.	0.4	15

#	Article	IF	CITATIONS
55	The use of nomograms in LDR-HDR prostate brachytherapy. Journal of Contemporary Brachytherapy, 2011, 3, 121-124.	0.4	7
56	Study of encapsulated T170m sources for their potential use in brachytherapy. Medical Physics, 2010, 37, 1629-1637.	1.6	23
57	Physics Contributions Evaluation of interpolation methods for TG-43 dosimetric parameters based on comparison with Monte Carlo data for high-energy brachytherapy sources. Journal of Contemporary Brachytherapy, 2010, 1, 28-32.	0.4	7
58	Physics Contributions A program for the independent verification ofâ€`brachytherapy planning system calculations. Journal of Contemporary Brachytherapy, 2010, 3, 129-133.	0.4	10
59	Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air. Medical Physics, 2010, 37, 869-876.	1.6	70
60	Brachytherapy treatment planning for complex applicators based on the AAPM TG-43 dosimetry algorithm: Case studies and clinical impact. Brachytherapy, 2009, 8, 106.	0.2	0
61	TC-43U1-based dosimetric characterization of model 67-6520 137 Cs brachytherapy source. Brachytherapy, 2009, 8, 131.	0.2	0
62	Evaluation of methods of interpolation-extrapolation of g L (r) and F(r,î) for high-energy brachytherapy sources. Brachytherapy, 2009, 8, 131-132.	0.2	0
63	The necessity of systematic verification of applicator position in brachytherapy treatment of the vaginal cuff. Brachytherapy, 2009, 8, 144-145.	0.2	0
64	An approach to using conventional brachytherapy software for clinical treatment planning of	1.6	41
65	TGâ€43 U1 based dosimetric characterization of model 67â€6520 Csâ€137 brachytherapy source. Medical Physics, 2009, 36, 4711-4719.	1.6	11
66	Evaluation of highâ€energy brachytherapy source electronic disequilibrium and dose from emitted electrons. Medical Physics, 2009, 36, 4250-4256.	1.6	50
67	Exclusive MRI-based tandem and colpostats reconstruction in gynaecological brachytherapy treatment planning. Radiotherapy and Oncology, 2009, 91, 181-186.	0.3	38
68	Broad beam transmission data for the shielding of brachytherapy facilities. Brachytherapy, 2008, 7, 113.	0.2	0
69	HDR Valencia skin applicators: A proposed commissioning procedure. Brachytherapy, 2008, 7, 137.	0.2	0
70	Equivalent phantom sizes in Ir-192 source brachytherapy dosimetric studies. Brachytherapy, 2008, 7, 137-138.	0.2	0
71	High-dose-rate brachytherapy in skin cancers: Patient convenience, local control and cosmetical results. Brachytherapy, 2008, 7, 159.	0.2	1
72	MRI based treatment planning in gynaecological brachytherapy. Brachytherapy, 2008, 7, 147.	0.2	0

#	Article	IF	CITATIONS
73	Monte Carlo study of the dose rate distributions for the Ir2.A85â€2 and Ir2.A85â€1 Irâ€192 afterloading sources. Medical Physics, 2008, 35, 1280-1287.	1.6	20
74	Equivalent phantom sizes and shapes for brachytherapy dosimetric studies of and. Medical Physics, 2008, 35, 4872-4877.	1.6	36
75	Radiation transmission data for radionuclides and materials relevant to brachytherapy facility shielding. Medical Physics, 2008, 35, 4898-4906.	1.6	25
76	Design and evaluation of a HDR skin applicator with flattening filter. Medical Physics, 2008, 35, 495-503.	1.6	53
77	Dosimetric characterization of Irâ€192 LDR elongated sources. Medical Physics, 2008, 35, 1154-1161.	1.6	10
78	MO-D-AUD B-08: Treatment Planning for Complex Brachytherapy Dose Distributions Using High-Z Shields and Conventional Software. Medical Physics, 2008, 35, 2866-2866.	1.6	2
79	TH â€AUD Aâ€08: Evaluation of Electronic Equilibrium Conditions Near Brachytherapy Sources. Medical Physics, 2008, 35, 2971-2971.	1.6	1
80	Technical note: Dosimetric study of a new Coâ€60 source used in brachytherapy. Medical Physics, 2007, 34, 3485-3488.	1.6	78
81	Broad beam transmission curves for new radionuclides in brachytherapy. Brachytherapy, 2007, 6, 108-109.	0.2	0
82	Flattering filter design for HDR surface applicators. Brachytherapy, 2006, 5, 98.	0.2	0
83	Broad-beam transmission data for new brachytherapy sources, Tm-170 and Yb-169. Radiation Protection Dosimetry, 2006, 118, 11-15.	0.4	28
84	A dosimetric study on the Ir-192 high dose rate Flexisource. Medical Physics, 2006, 33, 4578-4582.	1.6	56
85	SU-FF-T-180: Dosimetric Characteristics of Tm-170 as a Radionuclide for Its Possible Use in Brachytherapy. Medical Physics, 2006, 33, 2090-2090.	1.6	2
86	A dosimetric study of Leipzig applicators. International Journal of Radiation Oncology Biology Physics, 2005, 62, 579-584.	0.4	62
87	Monte Carlo dosimetric study of the BEBIG Co-60 HDR source. Physics in Medicine and Biology, 2005, 50, N309-N316.	1.6	51
88	Technique for routine output verification of Leipzig applicators with a well chamber. Medical Physics, 2005, 33, 16-20.	1.6	18
89	Monte Carlo calculation of the TG-43 dosimetric parameters of a new BEBIG Ir-192 HDR source. Radiotherapy and Oncology, 2005, 76, 79-85.	0.3	34
90	A Monte Carlo study of intersource effects in dome-type applicators loaded with LDR Cs-137 sources. Radiotherapy and Oncology, 2005, 77, 216-219.	0.3	7

#	Article	IF	CITATIONS
91	Technical note: Monte Carlo derivation of TG-43 dosimetric parameters for radiation therapy resources and 3M Cs-137 sources. Medical Physics, 2005, 32, 2464-2470.	1.6	14
92	Monte Carlo dosimetric characterization of the Cs-137 selectron/LDR source: Evaluation of applicator attenuation and superposition approximation effects. Medical Physics, 2004, 31, 493-499.	1.6	36
93	Monte Carlo evaluation of kerma in an HDR brachytherapy bunker. Physics in Medicine and Biology, 2004, 49, N389-N396.	1.6	7
94	Monte Carlo and experimental derivation of TG43 dosimetric parameters for CSM-type Cs-137 sources. Medical Physics, 2004, 32, 28-36.	1.6	29
95	Dosimetric study of the 15mm ROPES eye plaque. Medical Physics, 2004, 31, 3330-3336.	1.6	33
96	Monte Carlo dosimetric study of Best Industries and Alpha Omega Ir-192 brachytherapy seeds. Medical Physics, 2004, 31, 3298-3305.	1.6	38
97	Phantom size in brachytherapy source dosimetric studies. Medical Physics, 2004, 31, 2075-2081.	1.6	123
98	Technical note: Fitted dosimetric parameters of high dose-rate 192Ir sources according to the AAPM TG43 formalism. Medical Physics, 2003, 30, 651-654.	1.6	8
99	Comments on `Determination of the dose characteristics in the near area of a new type of192Ir-HDR afterloading source with a PinPoint ionization chamber'. Physics in Medicine and Biology, 2003, 48, L23-L24.	1.6	0
100	Influence of the non-homogeneity of Ir-192 wires in calibration of well chambers. Physics in Medicine and Biology, 2003, 48, 3961-3968.	1.6	3
101	Dosimetric characteristics of the CDC-type miniature cylindrical 137Cs brachytherapy sources. Medical Physics, 2002, 29, 538-543.	1.6	12
102	Monte Carlo calculation of dose rate distributions around the Walstam CDC.K-type137Cs sources. Physics in Medicine and Biology, 2001, 46, 2029-2040.	1.6	9
103	Assessment of the linear reference air kerma rate of192Ir wires. Physics in Medicine and Biology, 2001, 46, 2201-2207.	1.6	3
104	Monte Carlo dosimetry of the Buchler high dose rate192Ir source. Physics in Medicine and Biology, 2001, 46, N79-N90.	1.6	24
105	A Monte Carlo study of dose rate distribution around the specially asymmetric CSM3-a137Cs source. Physics in Medicine and Biology, 2001, 46, N169-N174.	1.6	7
106	Technical note: Monte-Carlo dosimetry of the HDR 12i and Plus 192Ir sources. Medical Physics, 2001, 28, 2586-2591.	1.6	61
107	Dosimetry characteristics of the Plus and 12i Gammamed PDR 192Ir sources. Medical Physics, 2001, 28, 2576-2585.	1.6	21
108	Fitted dosimetric parameters of high dose-rate 192Ir sources according to the AAPM TG43 formalism. Medical Physics, 2001, 28, 654-660.	1.6	13

#	Article	IF	CITATIONS
109	Dosimetric characteristics of backscattered electrons in lead. Physics in Medicine and Biology, 2000, 45, 1841-1849.	1.6	23
110	Monte Carlo calculations of dose rate distributions around the Amersham CDCS-M-type 137Cs source. Medical Physics, 2000, 27, 132-140.	1.6	27
111	A Monte Carlo investigation of the dosimetric characteristics of the CSM11 137Cs source from CIS. Medical Physics, 2000, 27, 2182-2189.	1.6	24
112	Monte Carlo calculation of dose rate distributions around 0.5 and 0.6 mm in diameter 1921r wires. Medical Physics, 1999, 26, 395-401.	1.6	12
113	Neutral meson production in p-Be and p-Au collisions at 450 GeV beam energy. European Physical Journal C, 1998, 4, 249-257.	1.4	27
114	Systematic study of low-mass electron pair production in p–Be and p–Au collisions at 450 GeV/ \$c\$. European Physical Journal C, 1998, 4, 231-247.	1.4	33
115	Monte Carlo calculation of dose rate distributions around Ir192 wires. Medical Physics, 1997, 24, 1221-1228.	1.6	56
116	Pion reabsorption in heavy-ion collisions interpreted in terms of the Δ capture process. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1996, 366, 63-68.	1.5	16
117	Importance of One- and Two-Body Dissipation at Intermediate Energies Studied by Hard Photons. Physical Review Letters, 1996, 76, 1425-1428.	2.9	9
118	Hard photons as a probe to study dissipation mechanisms. Nuclear Physics A, 1995, 583, 373-378.	0.6	1
119	A systematic study of neutral pion squeeze-out at intermediate energies. Nuclear Physics A, 1995, 583, 385-388.	0.6	2
120	Evidence for stopping in heavy-ion collisions from a study of hard-photon source velocities. Physical Review Letters, 1994, 72, 1608-1611.	2.9	24
121	Investigation of polar and azimuthal distributions of subthreshold pions at intermediate energies. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 328, 10-15.	1.5	9
122	Investigation of pion absorption in heavy-ion induced subthresholdï€0production. Physical Review Letters, 1993, 70, 904-907.	2.9	22
123	Study of low-lying states of 51V, 50,52,53Cr, 59Co and 63Cu nuclei by α-particle inelastic scattering. Nuclear Physics A, 1990, 513, 61-74.	0.6	17
124	Structure of low-lying states of 56,58Fe nuclei by α-particle inelastic scattering. Nuclear Physics A, 1989, 501, 301-310.	0.6	11
125	Structure of low-lying states by (α,α′) inelastic scattering at 25 MeV (I). 70,72,74,76Ge isotopes. Nuclear Physics A, 1988, 490, 227-244.	0.6	22
126	Structure of low-lying states by (α, α′) inelastic scattering at 25 MeV (II). 64,66,68,70Zn isotopes. Nuclear Physics A, 1988, 490, 245-261.	0.6	12

#	Article	IF	CITATIONS
127	Comparison of woods-saxon and double-folding potentials forα-particle scattering from54Fe at 24.5 MeV. Il Nuovo Cimento A, 1988, 99, 813-828.	0.2	4
128	Inelastic α-particle scattering on doubly even selenium isotopes. Journal of Physics G: Nuclear Physics, 1988, 14, 1103-1113.	0.8	14
129	Alpha-particle scattering from Ni isotopes at 25 MeV. Journal of Physics G: Nuclear Physics, 1987, 13, 1541-1554.	0.8	16
130	Folding model analysis of 32S + 32S elastic scattering at 70, 90, 97.09, 120 and 160 MeV. Nuclear Physics A, 1987, 473, 353-364.	0.6	16
131	Virtual wedge dosimetric behavior with monitor units number. , 0, , .		0