Qingyun Cai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/420788/publications.pdf

Version: 2024-02-01

331642 434170 1,224 71 21 31 h-index citations g-index papers 71 71 71 1790 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Near-infrared light-triggered î²-NaYF ₄ :Yb,Tm,Gd@MIL-100(Fe) nanomaterials for antibacterial applications. New Journal of Chemistry, 2022, 46, 4806-4813.	2.8	8
2	Alternatingly Amphiphilic Antimicrobial Oligoguanidines: Structure–Property Relationship and Usage as the Coating Material with Unprecedented Hemocompatibility. Chemistry of Materials, 2022, 34, 3670-3682.	6.7	6
3	Tissueâ€Engineered Bone Functionalized with MoS ₂ Nanosheets for Enhanced Repair of Criticalâ€Size Bone Defect in Rats. Advanced Functional Materials, 2022, 32, .	14.9	9
4	Nano-Coral Gold (NCG) Electrode for Electrochemical Determination of Arsenic (III) in Industrial Wastewater by Square Wave Anodic Stripping Voltammetry (SWASV). Analytical Letters, 2022, 55, 2639-2649.	1.8	0
5	Improving the Hemocompatibility of Antimicrobial Peptidomimetics through Amphiphilicity Masking Using a Secondary Amphiphilic Polymer. Advanced Healthcare Materials, 2022, 11, e2200546.	7.6	9
6	A degradable, broad-spectrum and resistance-resistant antimicrobial oligoguanidine as a disinfecting and therapeutic agent in aquaculture. Polymer Chemistry, 2022, 13, 3539-3551.	3.9	5
7	Potentiation of Vancomycin: Creating Cooperative Membrane Lysis through a "Derivatization-for-Sensitization―Approach. Journal of the American Chemical Society, 2022, 144, 10622-10639.	13.7	15
8	An Ag ₂ S@ZIF-Van nanosystem for NIR-II imaging of bacterial-induced inflammation and treatment of wound bacterial infection. Biomaterials Science, 2022, 10, 3972-3980.	5.4	11
9	ZnCuInSe/Au/TiO2 sandwich nanowires-based photoelectrochemical biosensor for ultrasensitive detection of kanamycin. Analytica Chimica Acta, 2021, 1146, 166-173.	5.4	20
10	Preparation of Sm-doped CaZrO ₃ nanosheets for facile human serum exosome isolation. New Journal of Chemistry, 2021, 45, 11719-11726.	2.8	4
11	Preparation of a CaTiO3/Al3+/Pr3+/Sm3+ nanocomposite for enrichment of exosomes in human serum. Talanta, 2021, 226, 122186.	5.5	6
12	An alternatingly amphiphilic, resistance-resistant antimicrobial oligoguanidine with dual mechanisms of action. Biomaterials, 2021, 275, 120858.	11.4	28
13	Polymerization and isomerization cyclic amplification for nucleic acid detection with attomolar sensitivity. Chemical Science, 2021, 12, 4509-4518.	7.4	13
14	A polymeric approach toward resistance-resistant antimicrobial agent with dual-selective mechanisms of action. Science Advances, 2021, 7, .	10.3	50
15	NaGdF ₄ :Nd@NaGdF ₄ Core-Shell Down-Conversion Nanoparticles as NIR-II Fluorescent Probes for Targeted Imaging of Bacteria. ACS Applied Nano Materials, 2021, 4, 11231-11238.	5.0	15
16	Water-soluble ZnCuInSe quantum dots for bacterial classification, detection, and imaging. Analytical and Bioanalytical Chemistry, 2020, 412, 8379-8389.	3.7	9
17	Bi, Fe, and Ti ternary co-doped ZrO2 nanocomposites as a mass spectrometry matrix for the determination of bisphenol A and tetrabromobisphenol A in tea. Mikrochimica Acta, 2020, 187, 582.	5.0	7
18	Efficient photocatalytic inactivation of E. coli by Mn-CdS/ZnCulnSe/CulnS ₂ quantum dots-sensitized TiO ₂ nanowires. Nanotechnology, 2020, 31, 395602.	2.6	11

#	Article	IF	CITATIONS
19	Polymyxin B–modified upconversion nanoparticles for selective detection of Gram-negative bacteria such as <i>Escherichia coli</i> . Journal of Chemical Research, 2020, 44, 756-761.	1.3	7
20	\hat{l}^2 -NaYF ₄ :Yb,Er,Gd nanorods@1T/2H-MoS ₂ for 980 nm NIR-triggered photocatalytic bactericidal properties. New Journal of Chemistry, 2020, 44, 12201-12207.	2.8	6
21	One-Step Self-Assembly of ZnPc/KMnF ₃ : Yb, Er upconversion Photodynamic Therapy System for Antibacterial Applications. Nano, 2020, 15, 2050075.	1.0	4
22	A visible-light-active CulnSe2:Zn/g-C3N4/TiO2 nanowires for photoelectrocatalytic bactericidal effects. New Journal of Chemistry, 2020, 44, 2303-2311.	2.8	8
23	Reduced titania nanosheets as an effective visible-light germicide. Nanotechnology, 2019, 30, 405602.	2.6	10
24	Cobalt-doped nanoporous carbon as SALDI-TOF-MS adsorbent and matrix for quantification of cetyltrimethylammonium bromide, Rhodamine B and Malachite Green at sub-ppt levels. Mikrochimica Acta, 2019, 186, 691.	5.0	7
25	Linear-hairpin variable primer RT-qPCR for MicroRNA. Chemical Science, 2019, 10, 2034-2043.	7.4	25
26	Multicolor lanthanide-doped CaS and SrS near-infrared stimulated luminescent nanoparticles with bright emission: application in broad-spectrum lighting, information coding, and bio-imaging. Nanoscale, 2019, 11, 12497-12501.	5.6	25
27	Blue Ti3+ self-doped TiO2 nanosheets with rich {001} facets for photocatalytic performance. New Journal of Chemistry, 2019, 43, 5759-5765.	2.8	7
28	Photoelectrocatalytic Hydrogen Generation Enabled by CdS Passivated ZnCuInSe Quantum Dot-Sensitized TiO2 Decorated with Ag Nanoparticles. Nanomaterials, 2019, 9, 393.	4.1	9
29	Preparation of TiO2/Bi/Fe/Zr nanocomposite for the highly selective enrichment of phosphopeptides. Talanta, 2019, 194, 870-875.	5.5	16
30	Two-dimensional TiO2 nanoflakes enable rapid SALDI-TOF-MS detection of toxic small molecules (dyes) Tj ETQq	TBgg.g0C	/Oyerlock 10
31	A label-free cytochrome c photoelectrochemical aptasensor based on CdS/CuInS2/Au/TiO2 nanotubes. Sensors and Actuators B: Chemical, 2019, 281, 1088-1096.	7.8	25
32	Highly-luminescent Eu, Sm, Mn-doped CaS up/down conversion nano-particles: application to ultra-sensitive latent fingerprint detection and <i>in vivo</i> bioimaging. Chemical Communications, 2018, 54, 591-594.	4.1	72
33	Preparation of Bi0.15Fe0.15TiO2 Nanocomposites for the Highly Selective Enrichment of Phosphopeptides. Analytical Chemistry, 2018, 90, 12414-12421.	6.5	23
34	Fe ³⁺ -Enhanced NIR-to-NIR upconversion nanocrystals for tumor-targeted trimodal bioimaging. New Journal of Chemistry, 2018, 42, 17073-17082.	2.8	9
35	Eu,Sm,Mn-Doped CaS Nanoparticles with 59.3% Upconversion-Luminescence Quantum Yield: Enabling Ultrasensitive and Facile Smartphone-Based Sulfite Detection. Analytical Chemistry, 2018, 90, 8658-8664.	6.5	23
36	Au nanoparticle-modified WO ₃ nanoflowers/TiO ₂ nanotubes used for the SERS detection of dyes. New Journal of Chemistry, 2017, 41, 13968-13973.	2.8	16

#	Article	IF	Citations
37	Fabrication of layered (CdS-Mn/MoS2/CdTe)-promoted TiO2 nanotube arrays with superior photocatalytic properties. Journal of Colloid and Interface Science, 2017, 486, 58-66.	9.4	32
38	Polydopamine decorated 3D nickel foam for extraction of sixteen polycyclic aromatic hydrocarbons. Journal of Chromatography A, 2016, 1478, 2-9.	3.7	24
39	Electrochemiluminescence aptasensor of TiO 2 /CdS:Mn hybrids for ultrasensitive detection of cytochrome c. Talanta, 2016, 160, 570-576.	5.5	15
40	Towards efficient visible-light active photocatalysts: CdS/Au sensitized TiO 2 nanotube arrays. Journal of Colloid and Interface Science, 2016, 483, 287-294.	9.4	31
41	CdS/ZnIn ₂ S ₄ /TiO ₂ 3D-heterostructures and their photoelectrochemical properties. New Journal of Chemistry, 2016, 40, 6675-6685.	2.8	17
42	Magnetic solid phase extraction and static headspace gas chromatography–mass spectrometry method for the analysis of polycyclic aromatic hydrocarbons. Journal of Chromatography A, 2016, 1429, 97-106.	3.7	17
43	A CdS/ZnSe/TiO 2 nanotube array and its visible light photocatalytic activities. Journal of Colloid and Interface Science, 2016, 462, 389-396.	9.4	39
44	Magnetic solid phase extraction and gas chromatography–mass spectrometrical analysis of sixteen polycyclic aromatic hydrocarbons. Journal of Chromatography A, 2015, 1406, 40-47.	3.7	29
45	Ultrasensitive label-free detection of miRNA with asymmetric hairpin probe, exonuclease I and SYBR Green I. Chemical Research in Chinese Universities, 2015, 31, 244-248.	2.6	0
46	A novel VS ₂ nanosheet-based biosensor for rapid fluorescence detection of cytochrome c. New Journal of Chemistry, 2015, 39, 1892-1898.	2.8	41
47	A Highly Sensitive Electrochemical Immunosensor for the Rapid Detection of Tris(2,3-Dibromopropyl) Isocyanurate. Analytical Letters, 2014, 47, 778-794.	1.8	2
48	Development of enzyme-linked immunosorbent assay for determination of polybrominated diphenyl ether BDE-121. Analytical Biochemistry, 2014, 447, 49-54.	2.4	8
49	Development of a polymeric ionic liquid coating for direct-immersion solid-phase microextraction using polyhedral oligomeric silsesquioxane as cross-linker. Journal of Chromatography A, 2014, 1348, 80-86.	3.7	39
50	Surface molecular imprinting on dye–(NH2)–SiO2 NPs for specific recognition and direct fluorescent quantification of perfluorooctane sulfonate. Sensors and Actuators B: Chemical, 2014, 195, 266-273.	7.8	59
51	A highly selective and reversible fluorescent Cu ²⁺ and S ^{2â°'} probe under physiological conditions and in live cells. RSC Advances, 2014, 4, 46951-46954.	3.6	30
52	Indirect competitive enzyme-linked immunosorbent assay of tris-(2,3-dibromopropyl) isocyanurate with monoclonal antibody. Talanta, 2014, 128, 434-444.	5.5	8
53	Fluorescence immunoassay of octachlorostyrene based on Fo¨rster resonance energy transfer between CdTe quantum dots and rhodamine B. Biosensors and Bioelectronics, 2014, 60, 52-56.	10.1	31
54	Synthesis of haptens and development of an indirect enzyme-linked immunosorbent assay for tris(2,3-dibromopropyl) isocyanurate. Analytical Biochemistry, 2014, 447, 15-22.	2.4	3

#	Article	IF	CITATIONS
55	Highly sensitive and selective photoelectrochemical biosensor platform for polybrominated diphenyl ether detection using the quantum dots sensitized three-dimensional, macroporous ZnO nanosheet photoelectrode. Biosensors and Bioelectronics, 2014, 61, 209-214.	10.1	44
56	Development of a highly robust solid phase microextraction fiber based on crosslinked methyl methacrylate–polyhedral oligomeric silsesquioxane hybrid polymeric coating. Analytica Chimica Acta, 2013, 792, 45-51.	5.4	30
57	Development of octadecyl-functionalized-nanotubular TiO ₂ /Ti wire solid-phase microextraction fiber. Analyst, The, 2013, 138, 569-575.	3.5	24
58	Magnetic retrieval of an extractant: fast ultrasound-assisted emulsification liquid–liquid microextraction for the determination of polycyclic aromatic hydrocarbons in environmental water samples. Analytical Methods, 2013, 5, 3999.	2.7	11
59	Homogeneous electrochemiluminescence immunoassay based on tris(2,3-dibromopropyl) isocyanurate using luminol luminescence and Ti/TiO2 NTs electrode. Analytical Methods, 2013, 5, 3626.	2.7	7
60	Application of magnetic material in the determination of polycyclic aromatic hydrocarbons in tree leaves by high performance liquid chromatography. Analytical Methods, 2011, 3, 2909.	2.7	11
61	Effect of anodization on the graphitization of PAN-based carbon fibers of PAN-based carbon fibers. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 926-930.	1.0	1
62	Fabrication of CdSe Nanoparticles Sensitized Long TiO ₂ Nanotube Arrays for Photocatalytic Degradation of Anthracene-9-carbonxylic Acid under Green Monochromatic Light. Journal of Physical Chemistry C, 2010, 114, 4783-4789.	3.1	89
63	Carbon-Nanotube-Guiding Oriented Growth of Gold Shrubs on TiO ₂ Nanotube Arrays. Journal of Physical Chemistry C, 2010, 114, 7694-7699.	3.1	20
64	Biocompatibility and in vitro antineoplastic drug-loaded trial of titania nanotubes prepared by anodic oxidation of a pure titanium. Science in China Series B: Chemistry, 2009, 52, 2161-2165.	0.8	16
65	A new method for measuring magnetoelastic sensor resonance frequency. , 2009, , .		0
66	Acid Phosphatase Assay with a Wireless Magnetoelastic Biosensor. Analytical Letters, 2007, 40, 471-482.	1.8	1
67	Measurement of Glucose Concentration in Blood Plasma Based on a Wireless Magnetoelastic Biosensor. Analytical Letters, 2007, 40, 897-906.	1.8	5
68	Acid Phosphatase Assay with a Wireless Magnetoelastic Biosensor. Analytical Letters, 2007, 40, 139-150.	1.8	0
69	Measurement of Serum Alkaline Phosphatase with a Surface Acoustic Wave Impedance Sensor Device Analytical Sciences, 1997, 13, 121-125.	1.6	3
70	SAW enzyme sensor applied to the determination of enzyme kinetic constants with the aid of a non-linear regression algorithm. Mikrochimica Acta, 1997, 126, 109-115.	5.0	1
71	Assay of NAD+-Isocitrate Dehydrogenase in Extracts of Bread Yeast with a Surface Acoustic Wave Impedance Sensor Analytical Sciences, 1996, 12, 449-453.	1.6	0