
Lamia Goual

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4207703/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New Insights into Asphaltene Structure and Aggregation by High-Resolution Microscopy. Energy & Fuels, 2022, 36, 8692-8700.	5.1	10
2	Multistep Fractionation of Coal and Application for Graphene Synthesis. ACS Omega, 2021, 6, 16573-16583.	3.5	3
3	Low-Temperature Graphene Growth and Shrinkage Dynamics from Petroleum Asphaltene on CuO Nanoparticle. Industrial & Engineering Chemistry Research, 2021, 60, 12001-12010.	3.7	0
4	Microscale investigation of DNAPL displacement by engineered graphene quantum dots in heterogeneous porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126936.	4.7	5
5	Nanoscale Characterization of Thin Films at Oil/Water Interfaces and Implications to Emulsion Stability. Energy & amp; Fuels, 2021, 35, 444-455.	5.1	14
6	Amorphization of carbon nanotubes in water by electron beam radiation. Carbon, 2020, 156, 313-319.	10.3	3
7	Impact of mineralogy and wettability on pore-scale displacement of NAPLs in heterogeneous porous media. Journal of Contaminant Hydrology, 2020, 230, 103599.	3.3	20
8	Pore-scale dynamics of nanofluid-enhanced NAPL displacement in carbonate rock. Journal of Contaminant Hydrology, 2020, 230, 103598.	3.3	10
9	Nanoscale Investigation of Asphaltene Deposition under Capillary Flow Conditions. Energy & Fuels, 2020, 34, 5148-5158.	5.1	14
10	Pore-scale experimental investigation of oil recovery enhancement in oil-wet carbonates using carbonaceous nanofluids. Scientific Reports, 2020, 10, 17539.	3.3	12
11	Characterization of the Interfacial Material in Asphaltenes Responsible for Oil/Water Emulsion Stability. Energy & amp; Fuels, 2020, 34, 13871-13882.	5.1	22
12	Coal-derived nanomaterials for enhanced NAPL flow in porous media. Carbon, 2020, 170, 439-451.	10.3	14
13	Auto-segmentation technique for SEM images using machine learning: Asphaltene deposition case study. Ultramicroscopy, 2020, 217, 113074.	1.9	12
14	Graphene Quantum Dots for the Mobilization and Solubilization of Nonaqueous Phase Liquids in Natural Porous Media. ACS Applied Nano Materials, 2020, 3, 10691-10701.	5.0	8
15	Nanoparticle-stabilized microemulsions for enhanced oil recovery from heterogeneous rocks. Fuel, 2020, 274, 117830.	6.4	31
16	Synergistic effects of surfactant mixtures on the displacement of nonaqueous phase liquids in porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582, 123885.	4.7	6
17	Microscale Investigation of the Impact of Surfactant Structure on the Residual Trapping in Natural Porous Media. Industrial & Engineering Chemistry Research, 2019, 58, 9397-9411.	3.7	12
18	Nanoscale Investigation of Surfactant-Enhanced Solubilization of Asphaltenes from Silicate-Rich Rocks. Energy & Fuels, 2019, 33, 3796-3807.	5.1	12

Lamia Goual

#	Article	IF	CITATIONS
19	Molecular polydispersity improves prediction of asphaltene aggregation. Journal of Molecular Liquids, 2018, 256, 382-394.	4.9	56
20	Polymers for asphaltene dispersion: Interaction mechanisms and molecular design considerations. Journal of Molecular Liquids, 2017, 230, 589-599.	4.9	49
21	Micro-scale displacement of NAPL by surfactant and microemulsion in heterogeneous porous media. Advances in Water Resources, 2017, 105, 173-187.	3.8	66
22	A Systematic Study on the Impact of Surfactant Chain Length on Dynamic Interfacial Properties in Porous Media: Implications for Enhanced Oil Recovery. Industrial & Engineering Chemistry Research, 2017, 56, 13677-13695.	3.7	37
23	Microemulsion-enhanced displacement of oil in porous media containing carbonate cements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530, 60-71.	4.7	48
24	Asphaltenes. Springer Handbooks, 2017, , 221-250.	0.6	9
25	Molecular Dynamics Simulations of Asphaltene Dispersion by Limonene and PVAc Polymer During CO2 Flooding. , 2016, , .		13
26	Atomistic Molecular Dynamics Simulations of Crude Oil/Brine Displacement in Calcite Mesopores. Langmuir, 2016, 32, 3375-3384.	3.5	85
27	Molecular simulations of NAPL removal from mineral surfaces using microemulsions and surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 506, 485-494.	4.7	48
28	Novel Dispersant for Formation Damage Prevention in CO ₂ : A Molecular Dynamics Study. Energy & Fuels, 2016, 30, 7187-7195.	5.1	16
29	Impact of Surfactant Structure on NAPL Mobilization and Solubilization in Porous Media. Industrial & Engineering Chemistry Research, 2016, 55, 11736-11746.	3.7	26
30	Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks. Journal of Contaminant Hydrology, 2016, 185-186, 61-73.	3.3	52
31	Molecular Dynamics Simulations of CO ₂ /Water/Quartz Interfacial Properties: Impact of CO ₂ Dissolution in Water. Langmuir, 2015, 31, 5812-5819.	3.5	81
32	Dynamic interfacial tension and wettability of shale in the presence of surfactants at reservoir conditions. Fuel, 2015, 148, 127-138.	6.4	108
33	Role of ion-pair interactions on asphaltene stabilization by alkylbenzenesulfonic acids. Journal of Colloid and Interface Science, 2015, 440, 23-31.	9.4	54
34	Molecular dynamics of wetting layer formation and forced water invasion in angular nanopores with mixed wettability. Journal of Chemical Physics, 2014, 141, 194703.	3.0	41
35	PC-SAFT modeling of asphaltene phase behavior in the presence of nonionic dispersants. Fluid Phase Equilibria, 2014, 369, 86-94.	2.5	15
36	Asphaltene Aggregation and Impact of Alkylphenols. Langmuir, 2014, 30, 5394-5403.	3.5	161

Lamia Goual

#	Article	IF	CITATIONS
37	The effects of SO2 contamination, brine salinity, pressure, and temperature on dynamic contact angles and interfacial tension of supercritical CO2/brine/quartz systems. International Journal of Greenhouse Gas Control, 2014, 28, 147-155.	4.6	107
38	Cluster of Asphaltene Nanoaggregates by DC Conductivity and Centrifugation. Energy & Fuels, 2014, 28, 5002-5013.	5.1	41
39	Wettability of Supercritical Carbon Dioxide/Water/Quartz Systems: Simultaneous Measurement of Contact Angle and Interfacial Tension at Reservoir Conditions. Langmuir, 2013, 29, 6856-6866.	3.5	211
40	Effect of Asphaltene Structure on Association and Aggregation Using Molecular Dynamics. Journal of Physical Chemistry B, 2013, 117, 5765-5776.	2.6	277
41	Dynamic adsorption of asphaltenes on quartz and calcite packs in the presence of brine films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434, 260-267.	4.7	53
42	Wettability in CO2/Brine/Quartz Systems: An Experimental Study at Reservoir Conditions. , 2012, , .		0
43	Advances in Asphaltene Science and the Yen–Mullins Model. Energy & Fuels, 2012, 26, 3986-4003.	5.1	789
44	On the formation and properties of asphaltene nanoaggregates and clusters by DC-conductivity and centrifugation. Fuel, 2011, 90, 2480-2490.	6.4	118
45	Predicting the Adsorption of Asphaltenes from Their Electrical Conductivity. Energy & Fuels, 2010, 24, 469-474.	5.1	28
46	Petrophase 2009 Panel Discussion on Standardization of Petroleum Fractions. Energy & Fuels, 2010, 24, 2175-2177.	5.1	22
47	Adsorption of Asphaltenes in Porous Media under Flow Conditions. Energy & Fuels, 2010, 24, 6009-6017.	5.1	68
48	Role of Resins on Asphaltene Stability. Energy & Fuels, 2010, 24, 2275-2280.	5.1	92
49	Adsorption of Crude Oil on Surfaces Using Quartz Crystal Microbalance with Dissipation (QCM-D) under Flow Conditions. Energy & Fuels, 2009, 23, 1237-1248.	5.1	90
50	Impedance Spectroscopy of Petroleum Fluids at Low Frequency. Energy & Fuels, 2009, 23, 2090-2094.	5.1	61
51	On-Column Separation of Wax and Asphaltenes in Petroleum Fluids. Energy & Fuels, 2008, 22, 4019-4028.	5.1	11
52	Characterization of the Charge Carriers in Bitumen. Energy & amp; Fuels, 2006, 20, 2099-2108.	5.1	15
53	Adsorption of Bituminous Components at Oil/Water Interfaces Investigated by Quartz Crystal Microbalance:Â Implications to the Stability of Water-in-Oil Emulsions. Langmuir, 2005, 21, 8278-8289.	3.5	64
54	Effect of resins and DBSA on asphaltene precipitation from petroleum fluids. AICHE Journal, 2004, 50, 470-479.	3.6	82

#	Article	IF	CITATIONS
55	Measuring asphaltenes and resins, and dipole moment in petroleum fluids. AICHE Journal, 2002, 48, 2646-2663.	3.6	144
56	Wax Precipitation in Gas Condensate Mixtures. SPE Production and Operations, 2001, 16, 250-259.	0.6	49