
Bart Staels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4207627/publications.pdf Version: 2024-02-01

RADT STAFLS

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism. Circulation, 1998, 98, 2088-2093.	1.6	1,540
3	Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation. Physiological Reviews, 2009, 89, 147-191.	28.8	1,309
4	PPARÎ ³ Activation Primes Human Monocytes into Alternative M2 Macrophages with Anti-inflammatory Properties. Cell Metabolism, 2007, 6, 137-143.	16.2	1,125
5	Activation of human aortic smooth-muscle cells is inhibited by PPARα but not by PPARγ activators. Nature, 1998, 393, 790-793.	27.8	1,104
6	PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nature Medicine, 2001, 7, 53-58.	30.7	1,075
7	Transient increase in obese gene expression after food intake or insulin administration. Nature, 1995, 377, 527-528.	27.8	1,063
8	The Organization, Promoter Analysis, and Expression of the Human PPARÎ ³ Gene. Journal of Biological Chemistry, 1997, 272, 18779-18789.	3.4	1,034
9	Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. Journal of Hepatology, 2015, 62, 720-733.	3.7	1,028
10	Peroxisome Proliferator-activated Receptor α Negatively Regulates the Vascular Inflammatory Gene Response by Negative Cross-talk with Transcription Factors NF-κB and AP-1. Journal of Biological Chemistry, 1999, 274, 32048-32054.	3.4	982
11	The peroxisome proliferator activated receptors (PPARs) and their effects on lipid metabolism and adipocyte differentiation. Lipids and Lipid Metabolism, 1996, 1302, 93-109.	2.6	900
12	International Union of Pharmacology. LXI. Peroxisome Proliferator-Activated Receptors. Pharmacological Reviews, 2006, 58, 726-741.	16.0	869
13	Peroxisome proliferator-activated receptors (PPARs): Nuclear receptors at the crossroads between lipid metabolism and inflammation. Inflammation Research, 2000, 49, 497-505.	4.0	853
14	Elafibranor, an Agonist of the Peroxisome Proliferatorâ^'Activated Receptorâ^'α andÂâ~'δ, Induces Resolution of Nonalcoholic Steatohepatitis Without Fibrosis Worsening. Gastroenterology, 2016, 150, 1147-1159.e5.	1.3	847
15	Activation of Proliferator-activated Receptors α and γ Induces Apoptosis of Human Monocyte-derived Macrophages. Journal of Biological Chemistry, 1998, 273, 25573-25580.	3.4	837
16	Sorting out the roles of PPARÂ in energy metabolism and vascular homeostasis. Journal of Clinical Investigation, 2006, 116, 571-580.	8.2	779
17	Peroxisome proliferator-activated receptors in inflammation control. Journal of Endocrinology, 2001, 169, 453-459.	2.6	697
18	Protective Role of Interleukin-10 in Atherosclerosis. Circulation Research, 1999, 85, e17-24.	4.5	631

#	Article	IF	CITATIONS
19	Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology, 2017, 152, 1679-1694.e3.	1.3	630
20	Therapeutic Roles of Peroxisome Proliferator–Activated Receptor Agonists. Diabetes, 2005, 54, 2460-2470.	0.6	575
21	Peroxisome Proliferator-activated Receptor α Activators Improve Insulin Sensitivity and Reduce Adiposity. Journal of Biological Chemistry, 2000, 275, 16638-16642.	3.4	554
22	Overview of Nomenclature of Nuclear Receptors. Pharmacological Reviews, 2006, 58, 685-704.	16.0	540
23	Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nature Medicine, 2015, 21, 512-517.	30.7	536
24	PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nature Reviews Endocrinology, 2017, 13, 36-49.	9.6	509
25	Macrophage subsets in atherosclerosis. Nature Reviews Cardiology, 2015, 12, 10-17.	13.7	501
26	Peroxisome Proliferator-Activated Receptor Activators Inhibit Thrombin-Induced Endothelin-1 Production in Human Vascular Endothelial Cells by Inhibiting the Activator Protein-1 Signaling Pathway. Circulation Research, 1999, 85, 394-402.	4.5	489
27	Novel Adipose Tissue–Mediated Resistance to Diet-Induced Visceral Obesity in 11β-Hydroxysteroid Dehydrogenase Type 1–Deficient Mice. Diabetes, 2004, 53, 931-938.	0.6	476
28	Peroxisome Proliferator-Activated Receptors and Atherogenesis. Circulation Research, 2004, 94, 1168-1178.	4.5	471
29	Coordinate Regulation of the Expression of the Fatty Acid Transport Protein and Acyl-CoA Synthetase Genes by PPARI± and PPARÎ3 Activators. Journal of Biological Chemistry, 1997, 272, 28210-28217.	3.4	464
30	The Farnesoid X Receptor Modulates Adiposity and Peripheral Insulin Sensitivity in Mice. Journal of Biological Chemistry, 2006, 281, 11039-11049.	3.4	463
31	Peroxisome proliterator-activated receptors, orphans with ligands and functions. Current Opinion in Lipidology, 1997, 8, 159-166.	2.7	455
32	Macrophage phenotypes in atherosclerosis. Immunological Reviews, 2014, 262, 153-166.	6.0	454
33	Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. Journal of Clinical Investigation, 2006, 116, 1052-1062.	8.2	447
34	Estrogen-Related Receptor α Directs Peroxisome Proliferator-Activated Receptor α Signaling in the Transcriptional Control of Energy Metabolism in Cardiac and Skeletal Muscle. Molecular and Cellular Biology, 2004, 24, 9079-9091.	2.3	436
35	Leptin. Lancet, The, 1998, 351, 737-742.	13.7	430
36	The Farnesoid X Receptor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2020-2030.	2.4	425

#	Article	IF	CITATIONS
37	Peroxisome Proliferator-Activated Receptor γ and Adipose Tissue—Understanding Obesity-Related Changes in Regulation of Lipid and Glucose Metabolism. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 386-395.	3.6	423
38	Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocrine Reviews, 2018, 39, 760-802.	20.1	420
39	Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis, 2014, 232, 346-360.	0.8	419
40	Induction of lκBα Expression as a Mechanism Contributing to the Anti-inflammatory Activities of Peroxisome Proliferator-activated Receptor-α Activators. Journal of Biological Chemistry, 2000, 275, 36703-36707.	3.4	417
41	Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology, 2008, 48, 474-486.	7.3	413
42	Induction of ob Gene Expression by Corticosteroids Is Accompanied by Body Weight Loss and Reduced Food Intake. Journal of Biological Chemistry, 1995, 270, 15958-15961.	3.4	410
43	CLA-1/SR-BI Is Expressed in Atherosclerotic Lesion Macrophages and Regulated by Activators of Peroxisome Proliferator-Activated Receptors. Circulation, 2000, 101, 2411-2417.	1.6	405
44	Metabolic syndrome without obesity: Hepatic overexpression of 11β-hydroxysteroid dehydrogenase type 1 in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7088-7093.	7.1	399
45	Improved Lipid and Lipoprotein Profile, Hepatic Insulin Sensitivity, and Glucose Tolerance in 11l²-Hydroxysteroid Dehydrogenase Type 1 Null Mice. Journal of Biological Chemistry, 2001, 276, 41293-41300.	3.4	395
46	Bile Acids Induce the Expression of the Human Peroxisome Proliferator-Activated Receptor $\hat{I}\pm$ Gene via Activation of the Farnesoid X Receptor. Molecular Endocrinology, 2003, 17, 259-272.	3.7	391
47	Peroxisome Proliferator-Activated Receptor (PPAR) α and PPARβ/δ, but not PPARγ, Modulate the Expression of Genes Involved in Cardiac Lipid Metabolism. Circulation Research, 2003, 92, 518-524.	4.5	389
48	Alterations in Lipoprotein Metabolism in Peroxisome Proliferator-activated Receptor α-deficient Mice. Journal of Biological Chemistry, 1997, 272, 27307-27312.	3.4	388
49	Pleiotropic Actions of Peroxisome Proliferator–Activated Receptors in Lipid Metabolism and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 717-726.	2.4	388
50	Peroxisome proliterator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Current Opinion in Lipidology, 1999, 10, 245-258.	2.7	386
51	Kupffer cells promote hepatic steatosis via interleukin- $1\hat{l}^2$ -dependent suppression of peroxisome proliferator-activated receptor \hat{l}_{\pm} activity. Hepatology, 2010, 51, 511-522.	7.3	381
52	Statin-induced inhibition of the Rho-signaling pathway activates PPARα and induces HDL apoA-I. Journal of Clinical Investigation, 2001, 107, 1423-1432.	8.2	381
53	Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase. A potential mechanism for the hypolipidemic action of fibrates Journal of Clinical Investigation, 1995, 95, 705-712.	8.2	381
54	The Residual Risk Reduction Initiative: A Call to Action to Reduce Residual Vascular Risk in Patients with Dyslipidemia. American Journal of Cardiology, 2008, 102, 1K-34K.	1.6	371

#	Article	IF	CITATIONS
55	Rev-erb-Î \pm modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nature Medicine, 2013, 19, 1039-1046.	30.7	361
56	Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology, 2013, 58, 1941-1952.	7.3	355
57	Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor Journal of Clinical Investigation, 1995, 96, 741-750.	8.2	350
58	Induction of the Acyl-Coenzyme A Synthetase Gene by Fibrates and Fatty Acids Is Mediated by a Peroxisome Proliferator Response Element in the C Promoter. Journal of Biological Chemistry, 1995, 270, 19269-19276.	3.4	344
59	Thiazolidinediones and PPAR \hat{l}^3 agonists: time for a reassessment. Trends in Endocrinology and Metabolism, 2012, 23, 205-215.	7.1	342
60	The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity. Cell Metabolism, 2015, 22, 418-426.	16.2	342
61	Human Atherosclerotic Plaque Alternative Macrophages Display Low Cholesterol Handling but High Phagocytosis Because of Distinct Activities of the PPARÎ ³ and LXRα Pathways. Circulation Research, 2011, 108, 985-995.	4.5	318
62	Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma Journal of Clinical Investigation, 1996, 98, 1004-1009.	8.2	318
63	Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2473-2478.	7.1	310
64	Dietary trans-10,cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. Journal of Lipid Research, 2002, 43, 1400-1409.	4.2	308
65	Bile Acids and Metabolic Regulation. Diabetes Care, 2009, 32, S237-S245.	8.6	304
66	Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies—a consensus statement from the European Atherosclerosis Society. European Heart Journal, 2021, 42, 4791-4806.	2.2	303
67	Pathophysiology and Mechanisms of Nonalcoholic Fatty Liver Disease. Annual Review of Physiology, 2016, 78, 181-205.	13.1	302
68	Transcription Factor TCF7L2 Genetic Study in the French Population: Expression in Human Â-Cells and Adipose Tissue and Strong Association With Type 2 Diabetes. Diabetes, 2006, 55, 2903-2908.	0.6	300
69	PPAR control of metabolism and cardiovascular functions. Nature Reviews Cardiology, 2021, 18, 809-823.	13.7	299
70	Expression of the Peroxisome Proliferator-activated Receptor α Gene Is Stimulated by Stress and Follows a Diurnal Rhythm. Journal of Biological Chemistry, 1996, 271, 1764-1769.	3.4	291
71	Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nature Communications, 2015, 6, 7629.	12.8	274
72	Type II fatty acid synthesis is not a suitable antibiotic target for Gram-positive pathogens. Nature, 2009, 458, 83-86.	27.8	273

#	Article	IF	CITATIONS
73	The Nuclear Receptors Peroxisome Proliferator-activated Receptor α and Rev-erbα Mediate the Species-specific Regulation of Apolipoprotein A-I Expression by Fibrates. Journal of Biological Chemistry, 1998, 273, 25713-25720.	3.4	270
74	Molecular Characterization of New Selective Peroxisome Proliferator-Activated Receptor Â Modulators With Angiotensin Receptor Blocking Activity. Diabetes, 2005, 54, 3442-3452.	0.6	270
75	PPARα gene expression correlates with severity and histological treatment response in patients with non-alcoholic steatohepatitis. Journal of Hepatology, 2015, 63, 164-173.	3.7	270
76	Distinct but complementary contributions of PPAR isotypes to energy homeostasis. Journal of Clinical Investigation, 2017, 127, 1202-1214.	8.2	270
77	PPAR: a new pharmacological target for neuroprotection in stroke and neurodegenerative diseases. Biochemical Society Transactions, 2006, 34, 1341-1346.	3.4	263
78	Peroxisome proliferator-activated receptors: regulation of transcriptional activities and roles in inflammation. Journal of Steroid Biochemistry and Molecular Biology, 2003, 85, 267-273.	2.5	262
79	Regulation of Macrophage Functions by PPAR-α, PPAR-γ, and LXRs in Mice and Men. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 1050-1059.	2.4	262
80	Farnesoid X Receptor Deficiency Improves Glucose Homeostasis in Mouse Models of Obesity. Diabetes, 2011, 60, 1861-1871.	0.6	261
81	Hepatic PCSK9 Expression Is Regulated by Nutritional Status via Insulin and Sterol Regulatory Element-binding Protein 1c. Journal of Biological Chemistry, 2006, 281, 6211-6218.	3.4	260
82	The orphan nuclear receptor RORα is a negative regulator of the inflammatory response. EMBO Reports, 2001, 2, 42-48.	4.5	259
83	Retinoid X receptors: common heterodimerization partners with distinct functions. Trends in Endocrinology and Metabolism, 2010, 21, 676-683.	7.1	258
84	Safety issues and prospects for future generations of PPAR modulators. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 1065-1081.	2.4	255
85	A fully dissociated compound of plant origin for inflammatory gene repression. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15827-15832.	7.1	245
86	Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbα antagonism: a single-centre propensity-matched cohort study and a randomised study. Lancet, The, 2018, 391, 59-69.	13.7	244
87	Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. Journal of Clinical Investigation, 2002, 109, 961-971.	8.2	244
88	Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. Journal of Lipid Research, 2012, 53, 1723-1737.	4.2	241
89	Peroxisome Proliferator–activated Receptors α and γ Down-regulate Allergic Inflammation and Eosinophil Activation. Journal of Experimental Medicine, 2003, 198, 411-421.	8.5	239
90	Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARα, PPARγ, and LXR. Biochemical and Biophysical Research Communications, 2004, 314, 151-158.	2.1	239

#	Article	IF	CITATIONS
91	Myocardial Contractile Dysfunction Is Associated With Impaired Mitochondrial Function and Dynamics in Type 2 Diabetic but Not in Obese Patients. Circulation, 2014, 130, 554-564.	1.6	237
92	Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology, 2003, 125, 544-555.	1.3	235
93	Opposite regulation of human versus mouse apolipoprotein A-I by fibrates in human apolipoprotein A-I transgenic mice Journal of Clinical Investigation, 1996, 97, 2408-2416.	8.2	230
94	Roles of PPARs in NAFLD: Potential therapeutic targets. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 809-818.	2.4	229
95	PPAR-α–Null Mice Are Protected From High-Fat Diet–Induced Insulin Resistance. Diabetes, 2001, 50, 2809-2814.	0.6	228
96	The role of PPARs in atherosclerosis. Trends in Molecular Medicine, 2002, 8, 422-430.	6.7	228
97	The Residual Risk Reduction Initiative: a call to action to reduce residual vascular risk in dyslipidaemic patients. Diabetes and Vascular Disease Research, 2008, 5, 319-335.	2.0	227
98	Glucose Regulates the Expression of the Farnesoid X Receptor in Liver. Diabetes, 2004, 53, 890-898.	0.6	226
99	Regulation of Lipid and Lipoprotein Metabolism by PPAR Activators. Clinical Chemistry and Laboratory Medicine, 2000, 38, 3-11.	2.3	225
100	Increased ABCA1 activity protects against atherosclerosis. Journal of Clinical Investigation, 2002, 110, 35-42.	8.2	216
101	The Orphan Nuclear Receptor Rev-Erbα Is a Peroxisome Proliferator-activated Receptor (PPAR) γ Target Gene and Promotes PPARγ-induced Adipocyte Differentiation. Journal of Biological Chemistry, 2003, 278, 37672-37680.	3.4	215
102	Early diet-induced non-alcoholic steatohepatitis in APOE2 knock-in mice and its prevention by fibrates. Journal of Hepatology, 2006, 44, 732-741.	3.7	213
103	Peroxisome proliferator-activated receptor Î ³ activators affect the maturation of human monocyte-derived dendritic cells. European Journal of Immunology, 2001, 31, 2857-2865.	2.9	212
104	Peroxisome Proliferator-Activated Receptor-α Activation as a Mechanism of Preventive Neuroprotection Induced by Chronic Fenofibrate Treatment. Journal of Neuroscience, 2003, 23, 6264-6271.	3.6	212
105	Fibrates down-regulate IL-1–stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFκB–C/EBP-β complex formation. Blood, 2003, 101, 545-551.	1.4	211
106	Peroxisome proliterator-activated receptor alpha in metabolic disease, inflammation, atherosclerosis and aging. Current Opinion in Lipidology, 1999, 10, 151-160.	2.7	210
107	Genome-Wide Profiling of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites. Molecular and Cellular Biology, 2012, 32, 852-867.	2.3	205
108	Role of the peroxisome proliferator-activated receptors (PPAR) in atherosclerosis. Biochemical Pharmacology, 2000, 60, 1245-1250.	4.4	202

#	Article	IF	CITATIONS
109	Bile Acid Metabolism and the Pathogenesis of Type 2 Diabetes. Current Diabetes Reports, 2011, 11, 160-166.	4.2	201
110	A Paradigm for Gene Regulation: Inflammation, NF-κB and PPAR. Advances in Experimental Medicine and Biology, 2003, 544, 181-196.	1.6	199
111	The antiâ€obesity effect of rimonabant is associated with an improved serum lipid profile. Diabetes, Obesity and Metabolism, 2005, 7, 65-72.	4.4	198
112	PPARÎ \pm Agonists Inhibit Tissue Factor Expression in Human Monocytes and Macrophages. Circulation, 2001, 103, 207-212.	1.6	197
113	Dysregulated lipid metabolism links NAFLD to cardiovascular disease. Molecular Metabolism, 2020, 42, 101092.	6.5	197
114	The kynurenine pathway is activated in human obesity and shifted toward kynurenine monooxygenase activation. Obesity, 2015, 23, 2066-2074.	3.0	196
115	MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. Journal of Clinical Investigation, 2015, 125, 2497-2509.	8.2	195
116	Dual Peroxisome Proliferator–Activated Receptor αĴ´Agonist GFT505 Improves Hepatic and Peripheral Insulin Sensitivity in Abdominally Obese Subjects. Diabetes Care, 2013, 36, 2923-2930.	8.6	187
117	Apolipoprotein A5, a Crucial Determinant of Plasma Triglyceride Levels, Is Highly Responsive to Peroxisome Proliferator-activated Receptor α Activators. Journal of Biological Chemistry, 2003, 278, 17982-17985.	3.4	186
118	The Farnesoid X Receptor Modulates Hepatic Carbohydrate Metabolism during the Fasting-Refeeding Transition. Journal of Biological Chemistry, 2005, 280, 29971-29979.	3.4	186
119	Fibrates Suppress Bile Acid Synthesis via Peroxisome Proliferator–Activated Receptor-α–Mediated Downregulation of Cholesterol 7α-Hydroxylase and Sterol 27-Hydroxylase Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 2001, 21, 1840-1845.	2.4	185
120	Peroxisome proliferator-activated receptors: from transcriptional control to clinical practice. Current Opinion in Lipidology, 2001, 12, 245-254.	2.7	182
121	Global Suppression of IL-6-induced Acute Phase Response Gene Expression after Chronic in Vivo Treatment with the Peroxisome Proliferator-activated Receptor-α Activator Fenofibrate. Journal of Biological Chemistry, 2004, 279, 16154-16160.	3.4	182
122	Variation in the PPARÎ \pm gene is associated with altered function in vitro and plasma lipid concentrations in Type II diabetic subjects. Diabetologia, 2000, 43, 673-680.	6.3	180
123	Oxidized phospholipids activate PPARα in a phospholipase A2-dependent manner. FEBS Letters, 2000, 471, 34-38.	2.8	179
124	The OSBP-related protein family in humans. Journal of Lipid Research, 2001, 42, 1203-1213.	4.2	177
125	Effects of Pinus pinaster and Pinus koraiensis seed oil supplementation on lipoprotein metabolism in the rat. Lipids, 1999, 34, 39-44.	1.7	176
126	Human ABCA1 BAC Transgenic Mice Show Increased High Density Lipoprotein Cholesterol and ApoAl-dependent Efflux Stimulated by an Internal Promoter Containing Liver X Receptor Response Elements in Intron 1. Journal of Biological Chemistry, 2001, 276, 33969-33979.	3.4	176

#	Article	IF	CITATIONS
127	FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology, 2003, 124, 1926-1940.	1.3	176
128	PPARα and PPARÎ ³ dual agonists for the treatment of type 2 diabetes and the metabolic syndrome. Current Opinion in Pharmacology, 2006, 6, 606-614.	3.5	176
129	Regulation of Bile Acid Synthesis by the Nuclear Receptor Rev-erbα. Gastroenterology, 2008, 135, 689-698.e5.	1.3	175
130	Reduction of Atherosclerosis by the Peroxisome Proliferator-activated Receptor α Agonist Fenofibrate in Mice. Journal of Biological Chemistry, 2002, 277, 48051-48057.	3.4	174
131	Rosiglitazone, a Peroxisome Proliferator-Activated Receptor-γ, Inhibits the Jun NH2-Terminal Kinase/Activating Protein 1 Pathway and Protects the Heart From Ischemia/Reperfusion Injury. Diabetes, 2002, 51, 1507-1514.	0.6	173
132	Peroxisome proliferator-activated receptors in reproductive tissues: from gametogenesis to parturition. Journal of Endocrinology, 2006, 189, 199-209.	2.6	173
133	Fibrates, Glitazones, and Peroxisome Proliferator–Activated Receptors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 894-899.	2.4	172
134	Heart failure and diabetes: metabolic alterations and therapeutic interventions: a state-of-the-art review from the Translational Research Committee of the Heart Failure Association–European Society of Cardiology. European Heart Journal, 2018, 39, 4243-4254.	2.2	171
135	Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-alpha in humans: no alteration in adipose tissue of obese and NIDDM patients. Diabetes, 1997, 46, 1319-1327.	0.6	171
136	PPAR agonists: multimodal drugs for the treatment of type-2 diabetes. Best Practice and Research in Clinical Endocrinology and Metabolism, 2007, 21, 687-710.	4.7	170
137	Severe Atherosclerosis and Hypoalphalipoproteinemia in the Staggerer Mouse, a Mutant of the Nuclear Receptor RORα. Circulation, 1998, 98, 2738-2743.	1.6	166
138	Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers. Nucleic Acids Research, 2012, 40, 8255-8265.	14.5	166
139	The role of fibric acids in atherosclerosis. Current Atherosclerosis Reports, 2001, 3, 83-92.	4.8	164
140	Macrophage Phenotypes and Their Modulation in Atherosclerosis. Circulation Journal, 2014, 78, 1775-1781.	1.6	163
141	The expression of ob gene is not acutely regulated by insulin and fasting in human abdominal subcutaneous adipose tissue Journal of Clinical Investigation, 1996, 98, 251-255.	8.2	162
142	Reduced cholesterol absorption upon PPARδactivation coincides with decreased intestinal expression of NPC1L1. Journal of Lipid Research, 2005, 46, 526-534.	4.2	161
143	Identification of Rev-erbα as a physiological repressor of apoC-III gene transcription. Journal of Lipid Research, 2002, 43, 2172-2179.	4.2	159
144	Tau deletion promotes brain insulin resistance. Journal of Experimental Medicine, 2017, 214, 2257-2269.	8.5	158

#	Article	IF	CITATIONS
145	ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver. Journal of Clinical Investigation, 2008, 118, 956-64.	8.2	158
146	Acute Antiinflammatory Properties of Statins Involve Peroxisome Proliferator–Activated Receptor-α via Inhibition of the Protein Kinase C Signaling Pathway. Circulation Research, 2006, 98, 361-369.	4.5	157
147	Macrophage polarization in metabolic disorders. Current Opinion in Lipidology, 2011, 22, 365-372.	2.7	157
148	Niemann–Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine. Biochemical and Biophysical Research Communications, 2006, 340, 1259-1263.	2.1	156
149	Effects of the New Dual PPARα/δ Agonist GFT505 on Lipid and Glucose Homeostasis in Abdominally Obese Patients With Combined Dyslipidemia or Impaired Glucose Metabolism. Diabetes Care, 2011, 34, 2008-2014.	8.6	155
150	Modulation of Hepatic Inflammatory Risk Markers of Cardiovascular Diseases by PPAR–α Activators. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 977-986.	2.4	154
151	Peroxisome proliferatorâ€activated receptor γ activators inhibit interleukinâ€12 production in murine dendritic cells. FEBS Letters, 2000, 486, 261-266.	2.8	152
152	Circadian and Glucocorticoid Regulation of Rev-erbα Expression in Liver ¹ . Endocrinology, 2000, 141, 3799-3806.	2.8	150
153	Peroxisome proliferator-activated receptor alpha (PPARalpha)-mediated regulation of multidrug resistance 2 (Mdr2) expression and function in mice. Biochemical Journal, 2003, 369, 539-547.	3.7	150
154	Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut, 2018, 67, 271-283.	12.1	150
155	PPAR Tissue Distribution and Interactions with Other Hormone-Signaling Pathways. Annals of the New York Academy of Sciences, 1996, 804, 231-251.	3.8	149
156	Peroxisome Proliferator–Activated Receptor α Gene Regulates Left Ventricular Growth in Response to Exercise and Hypertension. Circulation, 2002, 105, 950-955.	1.6	149
157	Bile???Acid???Sequestrants???and???the???Treatment of Type??2??Diabetes??Mellitus. Drugs, 2007, 67, 1383-1392.	10.9	149
158	PPARs: Transcription Factors Controlling Lipid and Lipoprotein Metabolism. Annals of the New York Academy of Sciences, 2002, 967, 7-18.	3.8	148
159	PPARα inhibits vascular smooth muscle cell proliferation underlying intimal hyperplasia by inducing the tumor suppressor p16INK4a. Journal of Clinical Investigation, 2005, 115, 3228-3238.	8.2	145
160	Characterization of the Human PPARα Promoter: Identification of a Functional Nuclear Receptor Response Element. Molecular Endocrinology, 2002, 16, 1013-1028.	3.7	144
161	When the Clock stops ticking, metabolic syndrome explodes. Nature Medicine, 2006, 12, 54-55.	30.7	144
162	Nuclear Receptor Subfamily 1 Group D Member 1 Regulates Circadian Activity of NLRP3 Inflammasome to Reduce the Severity of Fulminant Hepatitis in Mice. Gastroenterology, 2018, 154, 1449-1464.e20.	1.3	144

#	Article	IF	CITATIONS
163	Fibrates influence the expression of genes involved in lipoprotein metabolism in a tissue-selective manner in the rat Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1992, 12, 286-294.	3.9	142
164	Regulation of Lipoprotein Metabolism by Thiazolidinediones Occurs through a Distinct but Complementary Mechanism Relative to Fibrates. Arteriosclerosis, Thrombosis, and Vascular Biology, 1997, 17, 1756-1764.	2.4	142
165	Rev-erb-α: an integrator of circadian rhythms and metabolism. Journal of Applied Physiology, 2009, 107, 1972-1980.	2.5	142
166	A blood-based biomarker panel (NIS4) for non-invasive diagnosis of non-alcoholic steatohepatitis and liver fibrosis: a prospective derivation and global validation study. The Lancet Gastroenterology and Hepatology, 2020, 5, 970-985.	8.1	142
167	Fibrates and future PPARα agonists in the treatment of cardiovascular disease. Nature Clinical Practice Cardiovascular Medicine, 2008, 5, 542-553.	3.3	141
168	Fenofibrate Simultaneously Induces Hepatic Fatty Acid Oxidation, Synthesis, and Elongation in Mice. Journal of Biological Chemistry, 2009, 284, 34036-34044.	3.4	141
169	Prothrombotic factors in histologically proven nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology, 2014, 59, 121-129.	7.3	141
170	Transcriptional control of triglyceride metabolism: fibrates and fatty acids change the expression of the LPL and apo C-III genes by activating the nuclear receptor PPAR. Atherosclerosis, 1996, 124, S29-S37.	0.8	140
171	Negative Regulation of Human Fibrinogen Gene Expression by Peroxisome Proliferator-activated Receptor α Agonists via Inhibition of CCAAT Box/Enhancer-binding Protein β. Journal of Biological Chemistry, 2001, 276, 33471-33477.	3.4	140
172	Liver microRNA-21 is overexpressed in non-alcoholic steatohepatitis and contributes to the disease in experimental models by inhibiting PPAR1± expression. Gut, 2016, 65, 1882-1894.	12.1	140
173	The adipocyte specific transcription factor C/EBPalpha modulates human ob gene expression Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 5507-5511.	7.1	139
174	Circadian misalignment induces fatty acid metabolism gene profiles and compromises insulin sensitivity in human skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7789-7794.	7.1	138
175	Suppression of Pro-inflammatory Adhesion Molecules by PPAR-δ in Human Vascular Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 315-321.	2.4	137
176	Beneficial effects of exercise in a transgenic mouse model of Alzheimer's disease-like Tau pathology. Neurobiology of Disease, 2011, 43, 486-494.	4.4	137
177	Functional genomics of the CDKN2A/B locus in cardiovascular and metabolic disease: what have we learned from GWASs?. Trends in Endocrinology and Metabolism, 2015, 26, 176-184.	7.1	137
178	Peroxisome Proliferator-Activated Receptor $\hat{I}\pm$ Gene Variants Influence Progression of Coronary Atherosclerosis and Risk of Coronary Artery Disease. Circulation, 2002, 105, 1440-1445.	1.6	136
179	Drug Insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nature Clinical Practice Endocrinology and Metabolism, 2007, 3, 145-156.	2.8	136
180	FXR: a promising target for the metabolic syndrome?. Trends in Pharmacological Sciences, 2007, 28, 236-243.	8.7	136

#	Article	IF	CITATIONS
181	Demonstration of a day-night rhythm in human skeletal muscle oxidative capacity. Molecular Metabolism, 2016, 5, 635-645.	6.5	136
182	LDL Receptor Knock-Out Mice Are a Physiological Model Particularly Vulnerable to Study the Onset of Inflammation in Non-Alcoholic Fatty Liver Disease. PLoS ONE, 2012, 7, e30668.	2.5	135
183	Fibrates Increase Human REV-ERBα Expression in Liver via a Novel Peroxisome Proliferator-Activated Receptor Response Element. Molecular Endocrinology, 1999, 13, 400-409.	3.7	132
184	Alterations in Thyroid Status Modulate Apolipoprotein, Hepatic Triglyceride Lipase, and Low Density Lipoprotein Receptor in Rats*. Endocrinology, 1990, 127, 1144-1152.	2.8	129
185	Transcriptional Regulation of Apolipoprotein C-III Gene Expression by the Orphan Nuclear Receptor RORα. Journal of Biological Chemistry, 2001, 276, 2865-2871.	3.4	129
186	Transcriptional Activation of Apolipoprotein CIII Expression by Glucose May Contribute to Diabetic Dyslipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 513-519.	2.4	129
187	Von Willebrand Factor Multimers during Transcatheter Aortic-Valve Replacement. New England Journal of Medicine, 2016, 375, 335-344.	27.0	128
188	The circadian clock and liver function in health and disease. Journal of Hepatology, 2019, 71, 200-211.	3.7	128
189	Transcriptional Regulation of Apolipoprotein A-I Gene Expression by the Nuclear Receptor RORα. Journal of Biological Chemistry, 1997, 272, 22401-22404.	3.4	127
190	Fibrates Suppress Fibrinogen Gene Expression in Rodents Via Activation of the Peroxisome Proliferator-Activated Receptor-. Blood, 1999, 93, 2991-2998.	1.4	127
191	A Truncated Human Peroxisome Proliferator-Activated Receptor α Splice Variant with Dominant Negative Activity. Molecular Endocrinology, 1999, 13, 1535-1549.	3.7	126
192	Control of metabolism by nutrient-regulated nuclear receptors acting in the brain. Journal of Steroid Biochemistry and Molecular Biology, 2012, 130, 126-137.	2.5	126
193	Colesevelam lowers glucose and lipid levels in type 2 diabetes: the clinical evidence. Diabetes, Obesity and Metabolism, 2010, 12, 384-392.	4.4	124
194	Peroxisome Proliferator-activated Receptor α Induces Hepatic Expression of the Human Bile Acid Glucuronidating UDP-glucuronosyltransferase 2B4 Enzyme. Journal of Biological Chemistry, 2003, 278, 32852-32860.	3.4	123
195	Regulation of Rat Liver Apolipoprotein A-I, Apolipoprotein A-II and Acyl-Coenzyme A Oxidase Gene Expression by Fibrates and Dietary Fatty Acids. FEBS Journal, 1995, 232, 179-187.	0.2	121
196	Peroxisome Proliferator-activated Receptor α (PPARα) Turnover by the Ubiquitin-Proteasome System Controls the Ligand-induced Expression Level of Its Target Genes. Journal of Biological Chemistry, 2002, 277, 37254-37259.	3.4	121
197	Metformin interferes with bile acid homeostasis through AMPK-FXR crosstalk. Journal of Clinical Investigation, 2014, 124, 1037-1051.	8.2	121
198	Increased ABCA1 activity protects against atherosclerosis. Journal of Clinical Investigation, 2002, 110, 35-42.	8.2	121

#	Article	IF	CITATIONS
199	Retinoids increase human apo C-III expression at the transcriptional level via the retinoid X receptor. Contribution to the hypertriglyceridemic action of retinoids Journal of Clinical Investigation, 1998, 102, 625-632.	8.2	120
200	PPARÎ ³ activators improve glucose homeostasis by stimulating fatty acid uptake in the adipocytes. Atherosclerosis, 1998, 137, S75-S80.	0.8	119
201	Peroxisome Proliferator-activated Receptor-α Regulates Lipid Homeostasis, but Is Not Associated with Obesity. Journal of Biological Chemistry, 2001, 276, 39088-39093.	3.4	119
202	The Sodium–Glucose Cotransporter 2 Inhibitor Dapagliflozin Prevents Cardiomyopathy in a Diabetic Lipodystrophic Mouse Model. Diabetes, 2017, 66, 1030-1040.	0.6	119
203	Hepatic glucose sensing is required to preserve β cell glucose competence. Journal of Clinical Investigation, 2013, 123, 1662-1676.	8.2	118
204	Liver X Receptor Activation Potentiates the Lipopolysaccharide Response in Human Macrophages. Circulation Research, 2007, 101, 40-49.	4.5	117
205	The Sirt1 activator SRT3025 provides atheroprotection in Apoeâ^'/â^' mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. European Heart Journal, 2015, 36, 51-59.	2.2	117
206	Regulation of Human ApoA-I by Gemfibrozil and Fenofibrate Through Selective Peroxisome Proliferator-Activated Receptor α Modulation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 585-591.	2.4	116
207	Cardiac hypertrophy is enhanced in PPARÂ-/- mice in response to chronic pressure overload. Cardiovascular Research, 2008, 78, 79-89.	3.8	116
208	The transrepressive activity of peroxisome proliferator-activated receptor alpha is necessary and sufficient to prevent liver fibrosis in mice. Hepatology, 2014, 60, 1593-1606.	7.3	116
209	Fibrates Down-regulate Hepatic Scavenger Receptor Class B Type I Protein Expression in Mice. Journal of Biological Chemistry, 2003, 278, 7884-7890.	3.4	115
210	General Molecular Biology and Architecture of Nuclear Receptors. Current Topics in Medicinal Chemistry, 2012, 12, 486-504.	2.1	115
211	The UDP-glucuronosyltransferase 1A9 Enzyme Is a Peroxisome Proliferator-activated Receptor α and γ Target Gene. Journal of Biological Chemistry, 2003, 278, 13975-13983.	3.4	113
212	Regulation of apo A-I gene expression by fibrates. Atherosclerosis, 1998, 137, S19-S23.	0.8	112
213	Mitochondrial Dysfunction as an Arrhythmogenic Substrate. Journal of the American College of Cardiology, 2013, 62, 1466-1473.	2.8	112
214	The nuclear receptors Rev-erbs and RORs integrate circadian rhythms and metabolism. Diabetes and Vascular Disease Research, 2008, 5, 82-88.	2.0	111
215	Ppars, metabolic disease and atherosclerosis. Pharmacological Research, 2001, 44, 345-352.	7.1	110
216	PPARδ, but not PPARα, activates PGC-1α gene transcription in muscle. Biochemical and Biophysical Research Communications, 2007, 354, 1021-1027.	2.1	110

#	Article	IF	CITATIONS
217	Rimonabant, a Selective Cannabinoid CB1 Receptor Antagonist, Inhibits Atherosclerosis in LDL Receptor–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 12-18.	2.4	110
218	Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes. Molecular and Cellular Biology, 2013, 33, 2202-2211.	2.3	110
219	Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. Journal of Clinical Investigation, 2002, 109, 961-971.	8.2	110
220	Peroxisome Proliferator–Activated Receptor α Induces NADPH Oxidase Activity in Macrophages, Leading to the Generation of LDL with PPAR-α Activation Properties. Circulation Research, 2004, 95, 1174-1182.	4.5	108
221	Liver X Receptor Activation Controls Intracellular Cholesterol Trafficking and Esterification in Human Macrophages. Circulation Research, 2005, 97, 682-689.	4.5	108
222	On the mechanism for PPAR agonists to enhance ABCA1 gene expression. Atherosclerosis, 2009, 205, 413-419.	0.8	108
223	Peroxisome Proliferator-Activated Receptor α Reduces Cholesterol Esterification in Macrophages. Circulation Research, 2003, 92, 212-217.	4.5	107
224	Rupture of the Atherosclerotic Plaque. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 535-542.	2.4	107
225	The novel selective PPARα modulator (SPPARMα) pemafibrate improves dyslipidemia, enhances reverse cholesterol transport and decreases inflammation and atherosclerosis. Atherosclerosis, 2016, 249, 200-208.	0.8	107
226	Expression and Localization of Peroxisome Proliferator-Activated Receptors and Nuclear Factor κB in Normal and Lesional Psoriatic Skin. Journal of Investigative Dermatology, 2003, 121, 1104-1117.	0.7	105
227	PPARα Activators Inhibit Vascular Endothelial Growth Factor Receptor-2 Expression by Repressing Sp1-Dependent DNA Binding and Transactivation. Circulation Research, 2004, 94, 324-332.	4.5	105
228	MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool. Skeletal Muscle, 2018, 8, 25.	4.2	105
229	Regulation of Triglyceride Metabolism by PPARs : Fibrates and Thiazolidinediones have Distinct Effects. Journal of Atherosclerosis and Thrombosis, 1996, 3, 81-89.	2.0	104
230	Rapid and Body Weight–Independent Improvement of Endothelial and High-Density Lipoprotein Function After Roux-en-Y Gastric Bypass. Circulation, 2015, 131, 871-881.	1.6	103
231	PPARα blocks glucocorticoid receptor α-mediated transactivation but cooperates with the activated glucocorticoid receptor α for transrepression on NF-κB. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7397-7402.	7.1	102
232	Transcriptional network analysis implicates altered hepatic immune function in NASH development and resolution. Nature Metabolism, 2019, 1, 604-614.	11.9	102
233	Acyl oA synthetase mRNA expression is controlled by fibricâ€acid derivatives, feeding and liver proliferation. FEBS Journal, 1993, 216, 615-622.	0.2	100
234	The Two Variants of Oxysterol Binding Protein-related Protein-1 Display Different Tissue Expression Patterns, Have Different Intracellular Localization, and Are Functionally Distinct. Molecular Biology of the Cell, 2003, 14, 903-915.	2.1	100

#	Article	IF	CITATIONS
235	Peroxisome Proliferator-Activated Receptor Improves Pancreatic Adaptation to Insulin Resistance in Obese Mice and Reduces Lipotoxicity in Human Islets. Diabetes, 2006, 55, 1605-1613.	0.6	100
236	Evaluation of inflammatory and angiogenic factors in patients with non-alcoholic fatty liver disease. Cytokine, 2012, 59, 442-449.	3.2	100
237	Metabolic and Innate Immune Cues Merge into a Specific Inflammatory Response via the UPR. Cell, 2019, 177, 1201-1216.e19.	28.9	100
238	Tissue-Specific Roles of ABCA1 Influence Susceptibility to Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 548-554.	2.4	98
239	The Protein Kinase C Signaling Pathway Regulates a Molecular Switch between Transactivation and Transrepression Activity of the Peroxisome Proliferator-Activated Receptor α. Molecular Endocrinology, 2004, 18, 1906-1918.	3.7	97
240	HDL in Children with CKD Promotes Endothelial Dysfunction and an Abnormal Vascular Phenotype. Journal of the American Society of Nephrology: JASN, 2014, 25, 2658-2668.	6.1	97
241	IUPHAR-DB: new receptors and tools for easy searching and visualization of pharmacological data. Nucleic Acids Research, 2011, 39, D534-D538.	14.5	96
242	Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARα-regulated dermatopontin. JCI Insight, 2017, 2, .	5.0	96
243	Activation of junB by PKC and PKA signal transduction through a novelcis-acting element. Nucleic Acids Research, 1991, 19, 775-781.	14.5	95
244	DNA Binding-Independent Induction of lκBα Gene Transcription by PPARα. Molecular Endocrinology, 2002, 16, 1029-1039.	3.7	95
245	Despite Antiatherogenic Metabolic Characteristics, SCD1-Deficient Mice Have Increased Inflammation and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 341-347.	2.4	95
246	Krüppel-Like Factor KLF10 Is a Link between the Circadian Clock and Metabolism in Liver. Molecular and Cellular Biology, 2010, 30, 3059-3070.	2.3	95
247	Tryptophan metabolism activation by indoleamine 2,3-dioxygenase in adipose tissue of obese women: an attempt to maintain immune homeostasis and vascular tone. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R135-R143.	1.8	95
248	Intrahepatic cholesterol influences progression, inhibition and reversal of nonâ€alcoholic steatohepatitis in hyperlipidemic mice. FEBS Letters, 2010, 584, 1001-1005.	2.8	93
249	Regulation of steroidogenesis in NCI-H295 cells: a cellular model of the human fetal adrenal. Molecular Endocrinology, 1993, 7, 423-433.	3.7	93
250	Liver X receptor modulators: Effects on lipid metabolism and potential use in the treatment of atherosclerosis. Biochemical Pharmacology, 2009, 77, 1316-1327.	4.4	92
251	Nuclear bile acid signaling through the farnesoid X receptor. Cellular and Molecular Life Sciences, 2015, 72, 1631-1650.	5.4	92
252	Angiotensin AT1 Receptor Antagonist Irbesartan Decreases Lesion Size, Chemokine Expression, and Macrophage Accumulation in Apolipoprotein E-Deficient Mice. Journal of Cardiovascular Pharmacology, 2001, 38, 395-405.	1.9	91

#	Article	IF	CITATIONS
253	The farnesoid X receptor induces very low density lipoprotein receptor gene expression. FEBS Letters, 2004, 566, 173-177.	2.8	91
254	Selective PPAR modulators, dual and pan PPAR agonists: multimodal drugs for the treatment of Type 2 diabetes and atherosclerosis. Expert Opinion on Emerging Drugs, 2006, 11, 379-401.	2.4	91
255	Peroxisome proliferator-activated receptors and inflammation: from basic science to clinical applications. International Journal of Obesity, 2003, 27, S41-S45.	3.4	90
256	Activation of the farnesoid X receptor represses PCSK9 expression in human hepatocytes. FEBS Letters, 2008, 582, 949-955.	2.8	89
257	p16lNK4a deficiency promotes IL-4–induced polarization and inhibits proinflammatory signaling in macrophages. Blood, 2011, 118, 2556-2566.	1.4	89
258	Insulin-Mediated Down-Regulation of Apolipoprotein A5 Gene Expression through the Phosphatidylinositol 3-Kinase Pathway: Role of Upstream Stimulatory Factor. Molecular and Cellular Biology, 2005, 25, 1537-1548.	2.3	88
259	Detrimental Effects of Diet-Induced Obesity on Ï" Pathology Are Independent of Insulin Resistance in Ï" Transgenic Mice. Diabetes, 2013, 62, 1681-1688.	0.6	88
260	A Truncated Human Peroxisome Proliferator-Activated Receptor Splice Variant with Dominant Negative Activity. Molecular Endocrinology, 1999, 13, 1535-1549.	3.7	88
261	Technologyâ€assisted learning: a longitudinal field study of knowledge category, learning effectiveness and satisfaction in language learning. Journal of Computer Assisted Learning, 2008, 24, 245-259.	5.1	87
262	Fibrates Increase Human REV-ERBÂ Expression in Liver via a Novel Peroxisome Proliferator-Activated Receptor Response Element. Molecular Endocrinology, 1999, 13, 400-409.	3.7	87
263	Arterial Pulsatility and Circulating vonÂWillebrand Factor in Patients onÂMechanical CirculatoryÂSupport. Journal of the American College of Cardiology, 2018, 71, 2106-2118.	2.8	86
264	ATF6α downregulation of PPARα promotes lipotoxicity-induced tubulointerstitial fibrosis. Kidney International, 2019, 95, 577-589.	5.2	86
265	Peroxisome Proliferator-Activated Receptor γ Inhibits the Migration of Dendritic Cells: Consequences for the Immune Response. Journal of Immunology, 2003, 170, 5295-5301.	0.8	85
266	Induction of the Phospholipid Transfer Protein Gene Accounts for the High Density Lipoprotein Enlargement in Mice Treated with Fenofibrate. Journal of Biological Chemistry, 2001, 276, 25841-25847.	3.4	84
267	Statin Induction of Liver Fatty Acid-Binding Protein (L-FABP) Gene Expression Is Peroxisome Proliferator-activated Receptor-α-dependent. Journal of Biological Chemistry, 2004, 279, 45512-45518.	3.4	84
268	Role of the PPAR family of nuclear receptors in the regulation of metabolic and cardiovascular homeostasis: new approaches to therapy. Current Opinion in Pharmacology, 2005, 5, 177-183.	3.5	84
269	Human retinoic acid receptorâ€related orphan receptor α1 overexpression protects neurones against oxidative stressâ€induced apoptosis. Journal of Neurochemistry, 2006, 96, 1778-1789.	3.9	84
270	Revâ€erbα gives a time cue to metabolism. FEBS Letters, 2008, 582, 19-25.	2.8	84

#	Article	IF	CITATIONS
271	Peroxisome Proliferator–activated Receptor Activators Inhibit Oxidized Low-density Lipoprotein–induced Endothelin-1 Secretion in Endothelial Cells. Journal of Cardiovascular Pharmacology, 2002, 40, 822-831.	1.9	83
272	Expression and Functional Role of Peroxisome Proliferator-Activated Receptor-Î ³ in Ovarian Folliculogenesis in the Sheep1. Biology of Reproduction, 2003, 69, 1665-1674.	2.7	83
273	Peroxisome proliferator-activated receptors: new targets for the pharmacological modulation of macrophage gene expression and function. Current Opinion in Lipidology, 2003, 14, 459-468.	2.7	83
274	DPP-4 inhibitors in the treatment of type 2 diabetes. Biochemical Pharmacology, 2012, 83, 823-832.	4.4	83
275	Innate lymphoid cells contribute to allergic airway disease exacerbation by obesity. Journal of Allergy and Clinical Immunology, 2016, 138, 1309-1318.e11.	2.9	83
276	Vascular Endothelial Damage in the Pathogenesis of Organ Injury in Severe COVID-19. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1760-1773.	2.4	82
277	Transcription of the Human Genes for Cytochrome P450scc and P450c17 Is Regulated Differently in Human Adrenal NCI-H295 Cells Than in Mouse Adrenal Y1 Cells1. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 365-371.	3.6	81
278	Liver X receptors and the control of cholesterol homeostasis: potential therapeutic targets for the treatment of atherosclerosis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2003, 1631, 107-118.	2.4	80
279	Both Hepatic and Extrahepatic ABCA1 Have Discrete and Essential Functions in the Maintenance of Plasma High-Density Lipoprotein Cholesterol Levels In Vivo. Circulation, 2006, 114, 1301-1309.	1.6	80
280	The nuclear receptor FXR is expressed in pancreatic β ells and protects human islets from lipotoxicity. FEBS Letters, 2010, 584, 2845-2851.	2.8	80
281	Telomerase Activation in Atherosclerosis and Induction of Telomerase Reverse Transcriptase Expression by Inflammatory Stimuli in Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 245-252.	2.4	80
282	Induction of hepatic ABC transporter expression is part of the PPARα–mediated fasting response in the mouse. Gastroenterology, 2003, 124, 160-171.	1.3	79
283	The Farnesoid X Receptor Regulates Adipocyte Differentiation and Function by Promoting Peroxisome Proliferator-activated Receptor-γ and Interfering with the Wnt/β-Catenin Pathways. Journal of Biological Chemistry, 2010, 285, 36759-36767.	3.4	79
284	Temporal changes in bile acid levels and 12α-hydroxylation after Roux-en-Y gastric bypass surgery in type 2 diabetes. International Journal of Obesity, 2015, 39, 806-813.	3.4	79
285	Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metabolism, 2021, 33, 1483-1492.e10.	16.2	79
286	SUMOylation of Human Peroxisome Proliferator-activated Receptor α Inhibits Its Trans-activity through the Recruitment of the Nuclear Corepressor NCoR. Journal of Biological Chemistry, 2010, 285, 5983-5992.	3.4	78
287	Bile Acid Alterations Are Associated With Insulin Resistance, but Not With NASH, in Obese Subjects. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3783-3794.	3.6	78
288	Intestinal FXR-mediated FGF15 production contributes to diurnal control of hepatic bile acid synthesis in mice. Laboratory Investigation, 2010, 90, 1457-1467.	3.7	77

#	Article	IF	CITATIONS
289	A randomized placebo-controlled trial of elafibranor in patients with primary biliary cholangitis and incomplete response to UDCA. Journal of Hepatology, 2021, 74, 1344-1354.	3.7	77
290	Design and synthesis of highly potent and selective human peroxisome proliferator-activated receptor α agonists. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4689-4693.	2.2	76
291	PNPLA3 is regulated by glucose in human hepatocytes, and its I148M mutant slows down triglyceride hydrolysis. American Journal of Physiology - Endocrinology and Metabolism, 2012, 302, E1063-E1069.	3.5	76
292	Liver X Receptor Activation Stimulates Iron Export in Human Alternative Macrophages. Circulation Research, 2013, 113, 1196-1205.	4.5	76
293	Human Alternative Macrophages Populate Calcified Areas of Atherosclerotic Lesions and Display Impaired RANKL-Induced Osteoclastic Bone Resorption Activity. Circulation Research, 2017, 121, 19-30.	4.5	76
294	Coupled and uncoupled induction of fos and jun transcription by different second messengers in cells of hematopoietic origin. Nucleic Acids Research, 1990, 18, 221-228.	14.5	74
295	Liver-Specific Peroxisome Proliferator–Activated Receptor α Target Gene Regulation by the Angiotensin Type 1 Receptor Blocker Telmisartan. Diabetes, 2008, 57, 1405-1413.	0.6	74
296	A Mathematical Model of the Liver Circadian Clock Linking Feeding and Fasting Cycles to Clock Function. Cell Reports, 2016, 17, 1087-1097.	6.4	74
297	Different short- and long-term effects of resveratrol on nuclear factor-κB phosphorylation and nuclear appearance in human endothelial cells. American Journal of Clinical Nutrition, 2003, 77, 1220-1228.	4.7	73
298	Fenofibrate modifies transaminase gene expression via a peroxisome proliferator activated receptor α-dependent pathway. Toxicology Letters, 1998, 98, 13-23.	0.8	72
299	Transient impairment of the adaptive response to fasting in FXR-deficient mice. FEBS Letters, 2005, 579, 4076-4080.	2.8	72
300	von Willebrand Factor as a Biological Sensor of Blood Flow to Monitor Percutaneous Aortic Valve Interventions. Circulation Research, 2015, 116, 1193-1201.	4.5	72
301	The effects of fibrates and thiazolidinediones on plasma triglyceride metabolism are mediated by distinct peroxisome proliferator activated receptors (PPARs). Biochimie, 1997, 79, 95-99.	2.6	71
302	A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation. Nucleic Acids Research, 2014, 42, 10943-10959.	14.5	71
303	Catalytic site inhibition of insulin-degrading enzyme by a small molecule induces glucose intolerance in mice. Nature Communications, 2015, 6, 8250.	12.8	71
304	Peroxisome Proliferator-activated Receptor α Is Not Rate-limiting for the Lipoprotein-lowering Action of Fish Oil. Journal of Biological Chemistry, 2001, 276, 4634-4639.	3.4	70
305	PPARα, but not PPARγ, Activators Decrease Macrophage-Laden Atherosclerotic Lesions in a Nondiabetic Mouse Model of Mixed Dyslipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1897-1902.	2.4	70
306	Peroxisomal β-oxidation acts as a sensor for intracellular fatty acids and regulates lipolysis. Nature Metabolism, 2021, 3, 1648-1661.	11.9	70

#	Article	IF	CITATIONS
307	Peroxisome proliferator-activated receptor (PPAR) agonists decrease lipoprotein lipase secretion and glycated LDL uptake by human macrophages. FEBS Letters, 2002, 512, 85-90.	2.8	69
308	The RXR Agonist Bexarotene Improves Cholesterol Homeostasis and Inhibits Atherosclerosis Progression in a Mouse Model of Mixed Dyslipidemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2731-2737.	2.4	69
309	Peroxisome proliferator-activated receptor α regulates skin inflammation and humoral response in atopic dermatitis. Journal of Allergy and Clinical Immunology, 2008, 121, 962-968.e6.	2.9	69
310	Endotheliopathy Is Induced by Plasma From Critically Ill Patients and Associated With Organ Failure in Severe COVID-19. Circulation, 2020, 142, 1881-1884.	1.6	69
311	Age-related phenotypes in the staggerer mouse expand the RORα nuclear receptor's role beyond the cerebellum. Molecular and Cellular Endocrinology, 2002, 186, 1-5.	3.2	68
312	PPARÎ ³ and atherosclerosis. Current Medical Research and Opinion, 2005, 21, S13-S20.	1.9	68
313	Bile Acid Sequestrants for Lipid and Glucose Control. Current Diabetes Reports, 2010, 10, 70-77.	4.2	68
314	Transcription, adipocyte differentiation, and obesity. Journal of Molecular Medicine, 1996, 74, 347-352.	3.9	67
315	Plasma bile acids are not associated with energy metabolism in humans. Nutrition and Metabolism, 2010, 7, 73.	3.0	67
316	The Natural Protective Mechanism Against Hyperglycemia in Vascular Endothelial Cells. Diabetes, 2010, 59, 808-818.	0.6	67
317	Nuclear Receptors Linking Circadian Rhythms and Cardiometabolic Control. Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1529-1534.	2.4	67
318	Apolipoprotein A-IV Messenger Ribonucleic Acid Abundance Is Regulated in a Tissue-Specific Manner*. Endocrinology, 1990, 126, 2153-2163.	2.8	66
319	Regulation of lipid and lipoprotein metabolism by retinoids. Journal of the American Academy of Dermatology, 2001, 45, S158-S167.	1.2	66
320	Title is missing!. European Journal of Cardiovascular Prevention and Rehabilitation, 2001, 8, 187-194.	1.5	66
321	Phosphorylation of Farnesoid X Receptor by Protein Kinase C Promotes Its Transcriptional Activity. Molecular Endocrinology, 2008, 22, 2433-2447.	3.7	66
322	Peroxisome Proliferator–Activated Receptor-α Gene Level Differently Affects Lipid Metabolism and Inflammation in Apolipoprotein E2 Knock-In Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1573-1579.	2.4	66
323	Macrophage Function and Polarization in Cardiovascular Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 1127-1134.	2.4	66
324	Human Sterol 27-Hydroxylase (CYP27) Overexpressor Transgenic Mouse Model. Journal of Biological Chemistry, 2002, 277, 34036-34041.	3.4	65

#	Article	IF	CITATIONS
325	PPARÂ Agonists Suppress Osteopontin Expression in Macrophages and Decrease Plasma Levels in Patients With Type 2 Diabetes. Diabetes, 2007, 56, 1662-1670.	0.6	65
326	Cellâ€derived microparticles in atherosclerosis: biomarkers and targets for pharmacological modulation?. Journal of Cellular and Molecular Medicine, 2012, 16, 1365-1376.	3.6	65
327	Role of Proinflammatory CD68 ⁺ Mannose Receptor ^{â^'} Macrophages in Peroxiredoxin-1 Expression and in Abdominal Aortic Aneurysms in Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 431-438.	2.4	65
328	The effect of sensitisation to insulin with pioglitazone on fasting and postprandial lipid metabolism, lipoprotein modification by lipases, and lipid transfer activities in type 2 diabetic patients. Diabetologia, 2006, 49, 527-537.	6.3	64
329	The liver X-receptor alpha controls hepatic expression of the human bile acid-glucuronidating UGT1A3 enzyme in human cells and transgenic mice. Hepatology, 2006, 44, 368-378.	7.3	64
330	Increased Hepatic PDGF-AA Signaling Mediates Liver Insulin Resistance in Obesity-Associated Type 2 Diabetes. Diabetes, 2018, 67, 1310-1321.	0.6	64
331	Rexinoid Bexarotene Modulates Triglyceride but not Cholesterol Metabolism via Gene-Specific Permissivity of the RXR/LXR Heterodimer in the Liver. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1488-1495.	2.4	63
332	Hepatic saturated fatty acid fraction is associated with de novo lipogenesis and hepatic insulin resistance. Nature Communications, 2020, 11, 1891.	12.8	63
333	PPARα Inhibits TGF-β–Induced β 5 Integrin Transcription in Vascular Smooth Muscle Cells by Interacting With Smad4. Circulation Research, 2002, 91, e35-44.	4.5	62
334	Hepatic Expression of the UGT1A9 Gene Is Governed by Hepatocyte Nuclear Factor 4α. Molecular Pharmacology, 2005, 67, 241-249.	2.3	61
335	Effect of Rosiglitazone Treatment on Plaque Inflammation and Collagen Content in Nondiabetic Patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 845-850.	2.4	61
336	The PPARα Activator Fenofibrate Slows Down the Progression of the Left Ventricular Dysfunction in Porcine Tachycardia-Induced Cardiomyopathy. Journal of Cardiovascular Pharmacology, 2007, 49, 408-415.	1.9	61
337	The PPARα/p16 ^{INK4a} Pathway Inhibits Vascular Smooth Muscle Cell Proliferation by Repressing Cell Cycle–Dependent Telomerase Activation. Circulation Research, 2008, 103, 1155-1163.	4.5	61
338	Antipsychotic drug action on SREBPs-related lipogenesis and cholesterogenesis in primary rat hepatocytes. Naunyn-Schmiedeberg's Archives of Pharmacology, 2010, 381, 427-439.	3.0	61
339	Influence of Roux-en-Y gastric bypass on plasma bile acid profiles: a comparative study between rats, pigs and humans. International Journal of Obesity, 2016, 40, 1260-1267.	3.4	61
340	Transcriptional Regulation of Human Rev-erbα Gene Expression by the Orphan Nuclear Receptor Retinoic Acid-related Orphan Receptor α. Journal of Biological Chemistry, 2002, 277, 49275-49281.	3.4	60
341	Peroxisome proliferator-activated receptor $\hat{I}\pm$ controls cellular cholesterol trafficking in macrophages. Journal of Lipid Research, 2005, 46, 2717-2725.	4.2	60
342	Human Adipose Tissue Macrophages Display Activation of Cancer-related Pathways. Journal of Biological Chemistry, 2012, 287, 21904-21913.	3.4	60

#	Article	IF	CITATIONS
343	Structural and functional changes in HDL with low grade and chronic inflammation. International Journal of Cardiology, 2015, 188, 111-116.	1.7	60
344	Transcription of the Human Genes for Cytochrome P450scc and P450c17 Is Regulated Differently in Human Adrenal NCI-H295 Cells Than in Mouse Adrenal Y1 Cells. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 365-371.	3.6	60
345	IP receptor-dependent activation of PPARγ by stable prostacyclin analogues. Biochemical and Biophysical Research Communications, 2007, 360, 821-827.	2.1	59
346	Absence of stearoyl-CoA desaturase-1 ameliorates features of the metabolic syndrome in LDLR-deficient mice. Journal of Lipid Research, 2008, 49, 217-229.	4.2	59
347	DNA Binding-Independent Induction of IÂBÂ Gene Transcription by PPARÂ. Molecular Endocrinology, 2002, 16, 1029-1039.	3.7	59
348	Variable effects of different corticosteroids on plasma lipids, apolipoproteins, and hepatic apolipoprotein mRNA levels in rats Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1991, 11, 760-769.	3.9	58
349	Ala ¹² Ala Genotype of the Peroxisome Proliferator-Activated Receptor γ2 Protects against Atherosclerosis. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4238-4242.	3.6	58
350	The Farnesoid X Receptor (FXR) as Modulator of Bile Acid Metabolism. Reviews in Endocrine and Metabolic Disorders, 2004, 5, 319-326.	5.7	58
351	Does endoplasmic reticulum stress participate in APD-induced hepatic metabolic dysregulation?. Neuropharmacology, 2012, 62, 784-796.	4.1	58
352	A gene variant of <i>PNPLA3</i> , but not of <i>APOC3</i> , is associated with histological parameters of NAFLD in an obese population. Obesity, 2013, 21, 2138-2145.	3.0	57
353	Increased ABCA1 activity protects against atherosclerosis. Journal of Clinical Investigation, 2002, 110, 35-42.	8.2	57
354	Comparison of expression and regulation of the high-density lipoprotein receptor SR-BI and the low-density lipoprotein receptor in human adrenocortical carcinoma NCI-H295 cells. FEBS Journal, 1999, 261, 481-491.	0.2	56
355	Proteasomal degradation of retinoid X receptor α reprograms transcriptional activity of PPARγ in obese mice and humans. Journal of Clinical Investigation, 2010, 120, 1454-1468.	8.2	56
356	PPARalpha regulates the production of serum Vaninâ \in by liver. FEBS Letters, 2013, 587, 3742-3748.	2.8	56
357	Giardia muris Infection in Mice Is Associated with a Protective Interleukin 17A Response and Induction of Peroxisome Proliferator-Activated Receptor Alpha. Infection and Immunity, 2014, 82, 3333-3340.	2.2	56
358	Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARα. Nucleic Acids Research, 2016, 44, 10539-10553.	14.5	56
359	Cardiovascular Protection by Sodium Glucose Cotransporter 2 Inhibitors: Potential Mechanisms. American Journal of Medicine, 2017, 130, S30-S39.	1.5	56
360	Peroxisome Proliferator-Activated Receptor-α Activation Protects Brain Capillary Endothelial Cells from Oxygen-Glucose Deprivation-Induced Hyperpermeability in the Blood-Brain Barrier. Current Neurovascular Research, 2009, 6, 181-193.	1.1	56

#	Article	IF	CITATIONS
361	PPARβ/δActivation Induces Enteroendocrine L Cell GLP-1 Production. Gastroenterology, 2011, 140, 1564-1574.	1.3	55
362	Glucose sensing O-GlcNAcylation pathway regulates the nuclear bile acid receptor farnesoid X receptor (FXR). Hepatology, 2014, 59, 2022-2033.	7.3	55
363	Cell-Specific Dysregulation of MicroRNA Expression in Obese White Adipose Tissue. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 2821-2833.	3.6	55
364	The Nuclear Receptor Rev-erbα Is a Liver X Receptor (LXR) Target Gene Driving a Negative Feedback Loop on Select LXR-Induced Pathways in Human Macrophages. Molecular Endocrinology, 2008, 22, 1797-1811.	3.7	54
365	Bile acids, farnesoid X receptor, atherosclerosis and metabolic control. Current Opinion in Lipidology, 2007, 18, 289-297.	2.7	53
366	Systemic and Distal Repercussions of Liver-Specific Peroxisome Proliferator-Activated Receptor-α Control of the Acute-Phase Response. Endocrinology, 2008, 149, 3215-3223.	2.8	53
367	Control of nuclear receptor activities in metabolism by postâ€ŧranslational modifications. FEBS Letters, 2011, 585, 1640-1650.	2.8	53
368	Hepatic PPARÎ \pm is critical in the metabolic adaptation to sepsis. Journal of Hepatology, 2019, 70, 963-973.	3.7	53
369	Tissue-specific Expression of the Human Gene for Lecithin: Cholesterol Acyltransferase in Transgenic Mice Alters Blood Lipids, Lipoproteins and Lipases towards a Less Atherogenic Profile. FEBS Journal, 1995, 230, 567-575.	0.2	53
370	Beneficial Effects of Fibrates on Apolipoprotein A-I Metabolism Occur Independently of Any Peroxisome Proliferative Response. Circulation, 1999, 99, 2445-2451.	1.6	52
371	The Transcriptional Regulating Protein of 132 kDa (TReP-132) Enhances P450scc Gene Transcription through Interaction with Steroidogenic Factor-1 in Human Adrenal Cells. Journal of Biological Chemistry, 2002, 277, 39144-39155.	3.4	52
372	Synthesis, Biological Evaluation, and Molecular Modeling Investigation of New Chiral Fibrates with PPARα and PPARγ Agonist Activity. Journal of Medicinal Chemistry, 2005, 48, 5509-5519.	6.4	52
373	Cross-talk Between Statins and PPARα in Cardiovascular Diseases: Clinical Evidence and Basic Mechanisms. Trends in Cardiovascular Medicine, 2008, 18, 73-78.	4.9	51
374	An Increased Flux through the Glucose 6-Phosphate Pool in Enterocytes Delays Glucose Absorption in Fxr–/– Mice. Journal of Biological Chemistry, 2009, 284, 10315-10323.	3.4	51
375	Effects of the PPAR- <i>α</i> Agonist Fenofibrate on Acute and Short-Term Consequences of Brain Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 542-551.	4.3	51
376	Dietary Sargassum fusiforme improves memory and reduces amyloid plaque load in an Alzheimer's disease mouse model. Scientific Reports, 2019, 9, 4908.	3.3	51
377	Beneficial Metabolic Effects of Rapamycin Are Associated with Enhanced Regulatory Cells in Diet-Induced Obese Mice. PLoS ONE, 2014, 9, e92684.	2.5	51
378	Transcriptional Regulation of Apolipoprotein A5 Gene Expression by the Nuclear Receptor RORα. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1186-1192.	2.4	50

#	Article	IF	CITATIONS
379	S 26948: a New Specific Peroxisome Proliferator Activated Receptor Modulator With Potent Antidiabetes and Antiatherogenic Effects. Diabetes, 2007, 56, 2797-2808.	0.6	50
380	Unlike PPARγ, PPARα or PPARβ/δ activation does not promote human monocyte differentiation toward alternative macrophages. Biochemical and Biophysical Research Communications, 2009, 386, 459-462.	2.1	50
381	Activators of the farnesoid X receptor negatively regulate androgen glucuronidation in human prostate cancer LNCAP cells. Biochemical Journal, 2008, 410, 245-253.	3.7	49
382	CX3CL1 (fractalkine) and its receptor CX3CR1 regulate atopic dermatitis by controlling effector T cell retention in inflamed skin. Journal of Experimental Medicine, 2014, 211, 1185-1196.	8.5	49
383	The role of the orphan nuclear receptor Rev-Erbα in adipocyte differentiation and function. Biochimie, 2005, 87, 21-25.	2.6	48
384	Efficacy and safety of sitagliptin added to ongoing metformin and pioglitazone combination therapy in a randomized, placebo-controlled, 26-week trial in patients with type 2 diabetes. Journal of Diabetes and Its Complications, 2013, 27, 177-183.	2.3	48
385	Topical Intestinal Aminoimidazole Agonists of G-Protein-Coupled Bile Acid Receptor 1 Promote Glucagon Like Peptide-1 Secretion and Improve Glucose Tolerance. Journal of Medicinal Chemistry, 2017, 60, 4185-4211.	6.4	48
386	Hepatocyte-specific loss of GPS2 in mice reduces non-alcoholic steatohepatitis via activation of PPARα. Nature Communications, 2019, 10, 1684.	12.8	48
387	Fluid retention mediated by renal PPARÎ ³ . Cell Metabolism, 2005, 2, 77-78.	16.2	47
388	Fenofibrate, a peroxisome proliferator–activated receptorâ€Î± agonist, exerts anticonvulsive properties. Epilepsia, 2009, 50, 943-948.	5.1	47
389	Peroxisome Proliferator-Activated Receptors-α and -γ, and cAMP-Mediated Pathways, Control Retinol-Binding Protein-4 Gene Expression in Brown Adipose Tissue. Endocrinology, 2012, 153, 1162-1173.	2.8	47
390	LEPROT and LEPROTL1 cooperatively decrease hepatic growth hormone action in mice. Journal of Clinical Investigation, 2009, 119, 3830-3838.	8.2	47
391	The human hepatocyte cell lines IHH and HepaRG: models to study glucose, lipid and lipoprotein metabolism. Archives of Physiology and Biochemistry, 2012, 118, 102-111.	2.1	46
392	Cross-omics analysis revealed gut microbiome-related metabolic pathways underlying atherosclerosis development after antibiotics treatment. Molecular Metabolism, 2020, 36, 100976.	6.5	46
393	A Review of Bile Acid Sequestrants: Potential Mechanism(s) for Glucose-Lowering Effects in Type 2 Diabetes Mellitus. Postgraduate Medicine, 2009, 121, 25-30.	2.0	45
394	Combination therapy of statins and fibrates in the management of cardiovascular risk. Current Opinion in Lipidology, 2009, 20, 505-511.	2.7	45
395	Cardiovascular Protection by Sodium Glucose Cotransporter 2 Inhibitors: Potential Mechanisms. American Journal of Cardiology, 2017, 120, S28-S36.	1.6	45
396	The nuclear receptor FXR inhibits Glucagon-Like Peptide-1 secretion in response to microbiota-derived Short-Chain Fatty Acids. Scientific Reports, 2020, 10, 174.	3.3	45

#	Article	IF	CITATIONS
397	Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance. Journal of Lipid Research, 2002, 43, 742-750.	4.2	45
398	Schistosoma mansoni schistosomula reduce E-selectin and VCAM-1 expression in TNF-α-stimulated lung microvascular endothelial cells by interfering with the NF-κB pathway. European Journal of Immunology, 1999, 29, 3691-3701.	2.9	44
399	Cholesteryl ester transfer protein modulates the effect of liver X receptor agonists on cholesterol transport and excretion in the mouse. Journal of Lipid Research, 2004, 45, 543-550.	4.2	44
400	The Gene Encoding Acyl-CoA-binding Protein Is Subject to Metabolic Regulation by Both Sterol Regulatory Element-binding Protein and Peroxisome Proliferator-activated Receptor α in Hepatocytes. Journal of Biological Chemistry, 2005, 280, 5258-5266.	3.4	44
401	Metformin and pioglitazone: effectively treating insulin resistance. Current Medical Research and Opinion, 2006, 22, S27-S37.	1.9	44
402	Paullinia pinnata Extracts Rich in Polyphenols Promote Vascular Relaxation via Endothelium-dependent Mechanisms. Journal of Cardiovascular Pharmacology, 2006, 47, 599-608.	1.9	44
403	Activation of intestinal peroxisome proliferator-activated receptor-Â increases high-density lipoprotein production. European Heart Journal, 2013, 34, 2566-2574.	2.2	44
404	Increased Atherosclerotic Lesions in LDL Receptor Deficient Mice With Hematopoietic Nuclear Receptor Revâ€erbα Knock―Down. Journal of the American Heart Association, 2013, 2, e000235.	3.7	44
405	Topical ivermectin improves allergic skin inflammation. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 1212-1221.	5.7	44
406	Changes in IgG Fc receptor expression induced by phorbol 12-myristate 13-acetate treatment of THP-1 monocytic leukemia cells. Leukemia Research, 1992, 16, 317-327.	0.8	43
407	Farnesoid X receptor represses hepatic lipase gene expression. Journal of Lipid Research, 2004, 45, 2110-2115.	4.2	43
408	Impaired alternative macrophage differentiation of peripheral blood mononuclear cells from obese subjects. Diabetes and Vascular Disease Research, 2012, 9, 189-195.	2.0	43
409	Glucose-lowering effects of intestinal bile acid sequestration through enhancement of splanchnic glucose utilization. Trends in Endocrinology and Metabolism, 2014, 25, 235-244.	7.1	43
410	Brinster et al. reply. Nature, 2010, 463, E4-E4.	27.8	42
411	DHA-derived oxylipins, neuroprostanes and protectins, differentially and dose-dependently modulate the inflammatory response in human macrophages: Putative mechanisms through PPAR activation. Free Radical Biology and Medicine, 2017, 103, 146-154.	2.9	42
412	Keratinocyte Expression of A20/TNFAIP3 Controls Skin Inflammation Associated with Atopic Dermatitis and Psoriasis. Journal of Investigative Dermatology, 2019, 139, 135-145.	0.7	42
413	Interindividual Heterogeneity of SGLT2 Expression and Function in Human Pancreatic Islets. Diabetes, 2020, 69, 902-914.	0.6	42
414	Analysis of the association of MPO and MMP-9 with stroke severity and outcome. Neurology, 2020, 95, e97-e108.	1.1	42

#	Article	IF	CITATIONS
415	Tetradecylthioacetic acid prevents high fat diet induced adiposity and insulin resistance. Journal of Lipid Research, 2002, 43, 742-50.	4.2	42
416	The core component of the mammalian SWI/SNF complex SMARCD3/BAF60c is a coactivator for the nuclear retinoic acid receptor. Molecular and Cellular Endocrinology, 2007, 270, 23-32.	3.2	41
417	11βâ€hydroxysteroid dehydrogenase type 1 deficiency in bone marrowâ€derived cells reduces atherosclerosis. FASEB Journal, 2013, 27, 1519-1531.	0.5	41
418	Liver X Receptor Regulates Triglyceride Absorption Through Intestinal Down-regulation of Scavenger Receptor Class B, Type 1. Gastroenterology, 2016, 150, 650-658.	1.3	41
419	Hepatic sexual dimorphism — implications for non-alcoholic fatty liver disease. Nature Reviews Endocrinology, 2021, 17, 662-670.	9.6	41
420	PPARs in Inflammation, Atherosclerosis and Thrombosis. European Journal of Cardiovascular Prevention and Rehabilitation, 2001, 8, 187-194.	2.8	40
421	Extracorporal albumin dialysis (MARS) improves cholestasis and normalizes low apo A-I levels in a patient with benign recurrent intrahepatic cholestasis (BRIC). Liver, 2002, 22, 72-75.	0.1	40
422	Retinoid-related orphan receptor regulates several genes that control metabolism in skeletal muscle cells: links to modulation of reactive oxygen species production. Journal of Molecular Endocrinology, 2007, 39, 29-44.	2.5	40
423	Tissue Factor Pathway Inhibitor-2 gene methylation is associated with low expression in carotid atherosclerotic plaques. Atherosclerosis, 2009, 204, e4-e14.	0.8	40
424	Skeletal muscle functions around the clock. Diabetes, Obesity and Metabolism, 2015, 17, 39-46.	4.4	40
425	The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis. Journal of Hepatology, 2018, 69, 1099-1109.	3.7	40
426	Control of Cell Identity by the Nuclear Receptor HNF4 in Organ Pathophysiology. Cells, 2020, 9, 2185.	4.1	40
427	Why is elevation of serum cholesterol associated with exposure to perfluoroalkyl substances (PFAS) in humans? A workshop report on potential mechanisms. Toxicology, 2021, 459, 152845.	4.2	40
428	Developmental and Pharmacological Regulation of Apolipoprotein C-II Gene Expression. Arteriosclerosis, Thrombosis, and Vascular Biology, 1999, 19, 115-121.	2.4	39
429	The farnesoid X receptor: a novel drug target?. Expert Opinion on Investigational Drugs, 2004, 13, 1135-1148.	4.1	39
430	Pleiotropic effects of fibrates. Current Atherosclerosis Reports, 2005, 7, 396-401.	4.8	39
431	Peroxisome proliferatorâ€activated receptors – from active regulators of macrophage biology to pharmacological targets in the treatment of cardiovascular disease. Journal of Internal Medicine, 2008, 263, 28-42.	6.0	39
432	Peroxisome Proliferator-activated Receptor Î ³ Regulates Genes Involved in Insulin/Insulin-like Growth Factor Signaling and Lipid Metabolism during Adipogenesis through Functionally Distinct Enhancer Classes. Journal of Biological Chemistry, 2014, 289, 708-722.	3.4	39

#	Article	IF	CITATIONS
433	Rev-erb-α regulates atrophy-related genes to control skeletal muscle mass. Scientific Reports, 2017, 7, 14383.	3.3	39
434	Bile acid alterations in nonalcoholic fatty liver disease, obesity, insulin resistance and type 2 diabetes: what do the human studies tell?. Current Opinion in Lipidology, 2019, 30, 244-254.	2.7	39
435	Plasma BCAA Changes in Patients With NAFLD Are Sex Dependent. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 2311-2321.	3.6	39
436	Hepatic Molecular Signatures Highlight the Sexual Dimorphism of Nonalcoholic Steatohepatitis (NASH). Hepatology, 2021, 73, 920-936.	7.3	39
437	Fibrates Suppress Fibrinogen Gene Expression in Rodents Via Activation of the Peroxisome Proliferator-Activated Receptor-. Blood, 1999, 93, 2991-2998.	1.4	39
438	Regulation of OB Gene Expression in Rodents and Humans. Hormone and Metabolic Research, 1996, 28, 638-641.	1.5	38
439	Cell Culture Conditions Determine Apolipoprotein CIII Secretion and Regulation by Fibrates in Human Hepatoma HepG2 Cells. Cellular Physiology and Biochemistry, 1999, 9, 139-149.	1.6	38
440	Hepatic de Novo Synthesis of Glucose 6-Phosphate Is Not Affected in Peroxisome Proliferator-activated Receptor α-Deficient Mice but Is Preferentially Directed toward Hepatic Glycogen Stores after a Short Term Fast. Journal of Biological Chemistry, 2004, 279, 8930-8937.	3.4	38
441	Farnesoid X Receptor: A New Player in Glucose Metabolism?. Endocrinology, 2005, 146, 981-983.	2.8	38
442	Characterization of New PPARγ Agonists: Analysis of Telmisartan's Structural Components. ChemMedChem, 2009, 4, 445-456.	3.2	38
443	The Nuclear Orphan Receptor Nur77 Is a Lipotoxicity Sensor Regulating Glucose-Induced Insulin Secretion in Pancreatic β-Cells. Molecular Endocrinology, 2012, 26, 399-413.	3.7	38
444	M1 and M2 macrophage proteolytic and angiogenic profile analysis in atherosclerotic patients reveals a distinctive profile in type 2 diabetes. Diabetes and Vascular Disease Research, 2015, 12, 279-289.	2.0	38
445	Inhibition of progesterone production in human luteinized granulosa cells treated with LXR agonists. Molecular Human Reproduction, 2007, 13, 373-379.	2.8	37
446	PPAR Agonists and the Metabolic Syndrome. Therapie, 2007, 62, 319-326.	1.0	37
447	Alternative macrophages in atherosclerosis: not always protective!. Journal of Clinical Investigation, 2018, 128, 910-912.	8.2	37
448	4,4-Dimethyl-1,2,3,4-tetrahydroquinoline-based PPARα∫γ agonists. Part I: Synthesis and pharmacological evaluation. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1617-1622.	2.2	36
449	<i>Cdkn2a</i> /p16 <i>Ink4a</i> Regulates Fasting-Induced Hepatic Gluconeogenesis Through the PKA-CREB-PGC11± Pathway. Diabetes, 2014, 63, 3199-3209.	0.6	36
450	RÃ1es des "Peroxisome Proliferator-Activated Receptors―(PPARs) dans la régulation du métabolisme des lipides et le contrÃ1e de l'inflammation. Société De Biologie Journal, 2002, 196, 47-52.	0.3	35

#	Article	IF	CITATIONS
451	Inflammation, dyslipidaemia, diabetes and PPARs: pharmacological interest of dual PPARα and PPARÎ ³ agonists. International Journal of Clinical Practice, 2004, 58, 22-29.	1.7	35
452	Peroxisome Proliferator-Activated Receptors at the Crossroads of Obesity, Diabetes, and Cardiovascular Disease. Journal of the American College of Cardiology, 2006, 48, A24-A32.	2.8	35
453	Morphologic and Electroretinographic Phenotype of SR-BI Knockout Mice after a Long-Term Atherogenic Diet. , 2009, 50, 3931.		35
454	Overweight induced by chronic risperidone exposure is correlated with overexpression of the SREBP-1c and FAS genes in mouse liver. Naunyn-Schmiedeberg's Archives of Pharmacology, 2011, 383, 423-436.	3.0	35
455	Profiling Serum Bile Acid Glucuronides in Humans: Gender Divergences, Genetic Determinants, and Response to Fenofibrate. Clinical Pharmacology and Therapeutics, 2013, 94, 533-543.	4.7	35
456	miR-206 controls LXRα expression and promotes LXR-mediated cholesterol efflux in macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 827-835.	2.4	35
457	Synchronized human skeletal myotubes of lean, obese and type 2 diabetic patients maintain circadian oscillation of clock genes. Scientific Reports, 2016, 6, 35047.	3.3	35
458	Combinatorial regulation of hepatic cytoplasmic signaling and nuclear transcriptional events by the OGT/REV-ERBα complex. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11033-E11042.	7.1	35
459	Opposite regulation of hepatic lipase and lecithin: cholesterol acyltransferase by glucocorticoids in rats. Lipids and Lipid Metabolism, 1992, 1128, 181-185.	2.6	34
460	IAP Survivin Regulates Atherosclerotic Macrophage Survival. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 901-907.	2.4	34
461	Schistosoma mansoni induces the synthesis of IL-6 in pulmonary microvascular endothelial cells: role of IL-6 in the control of lung eosinophilia during infection. European Journal of Immunology, 2001, 31, 2751-2761.	2.9	33
462	Different ways to regulate the PPARα stability. Biochemical and Biophysical Research Communications, 2004, 319, 663-670.	2.1	33
463	Genomic and non-genomic interactions of PPARα with xenobiotic-metabolizing enzymes. Trends in Endocrinology and Metabolism, 2004, 15, 324-330.	7.1	33
464	Peroxisome Proliferator-Activated Receptors Mediate Pleiotropic Actions of Statins. Circulation Research, 2007, 100, 1394-1395.	4.5	33
465	Atheroprotective Effect of Human Apolipoprotein A5 in a Mouse Model of Mixed Dyslipidemia. Circulation Research, 2008, 103, 450-453.	4.5	33
466	Inhibition of adipocyte differentiation by RORα. FEBS Letters, 2009, 583, 2031-2036.	2.8	33
467	Alternative human liver transcripts of TCF7L2 bind to the gluconeogenesis regulator HNF4α at the protein level. Diabetologia, 2014, 57, 785-796.	6.3	33
468	<i>SULF2</i> strongly prediposes to fasting and postprandial triglycerides in patients with obesity and type 2 diabetes mellitus. Obesity, 2014, 22, 1309-1316.	3.0	33

#	Article	IF	CITATIONS
469	Efficacy and safety of initial combination treatment with sitagliptin and pioglitazone—a factorial study. Diabetes, Obesity and Metabolism, 2014, 16, 223-230.	4.4	33
470	Ketone Body Therapy Protects From Lipotoxicity and Acute Liver Failure Upon Pparα Deficiency. Molecular Endocrinology, 2015, 29, 1134-1143.	3.7	33
471	The RBM14/CoAA-interacting, long intergenic non-coding RNA Paral1 regulates adipogenesis and coactivates the nuclear receptor PPARÎ ³ . Scientific Reports, 2017, 7, 14087.	3.3	33
472	Pirfenidone Is an Agonistic Ligand for PPARα and Improves NASH by Activation of SIRT1/LKB1/pAMPK. Hepatology Communications, 2020, 4, 434-449.	4.3	33
473	PPARs in liver physiology. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166097.	3.8	33
474	Down-regulation of hepatic lipase gene expression and activity by fenofibrate. Lipids and Lipid Metabolism, 1992, 1123, 227-230.	2.6	32
475	Opposite in vitro and in vivo regulation of hepatic apolipoprotein A-I gene expression by retinoic acid. Absence of effects on apolipoprotein A-II gene expression Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 1994, 14, 1657-1664.	3.9	32
476	Potential regulatory role of the farnesoid X receptor in the metabolic syndrome. Biochimie, 2005, 87, 93-98.	2.6	32
477	Coordinated Regulation of PPAR Expression and Activity through Control of Chromatin Structure in Adipogenesis and Obesity. PPAR Research, 2012, 2012, 1-9.	2.4	32
478	Peroxisome Proliferator–Activated Receptor-γ Activation Induces 11β-Hydroxysteroid Dehydrogenase Type 1 Activity in Human Alternative Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 677-685.	2.4	32
479	The orphan nuclear receptor Rev-erbα: a transcriptional link between circadian rhythmicity and cardiometabolic disease. Current Opinion in Lipidology, 2007, 18, 141-146.	2.7	31
480	Downregulation of the tumour suppressor p16INK4A contributes to the polarisation of human macrophages toward an adipose tissue macrophage (ATM)-like phenotype. Diabetologia, 2011, 54, 3150-3156.	6.3	31
481	The dual peroxisome proliferator-activated receptor alpha/delta agonist GFT505 exerts anti-diabetic effects in <i>db</i> / <i>db</i> mice without peroxisome proliferator-activated receptor gamma–associated adverse cardiac effects. Diabetes and Vascular Disease Research, 2014, 11, 440-447.	2.0	31
482	Meta-Analysis of Abdominal Aortic Aneurysm in Patients With Coronary Artery Disease. American Journal of Cardiology, 2015, 116, 1451-1456.	1.6	31
483	Glycogen Dynamics Drives Lipid Droplet Biogenesis during Brown Adipocyte Differentiation. Cell Reports, 2019, 29, 1410-1418.e6.	6.4	31
484	Cholangiopathy and Biliary Fibrosis in Cyp2c70-Deficient Mice Are Fully Reversed by Ursodeoxycholic Acid. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1045-1069.	4.5	31
485	Neonatal extinction of liver lipoprotein lipase expression. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1992, 1131, 281-286.	2.4	30
486	Fenofibrate Increases Homocystinemia Through a PPARα-Mediated Mechanism. Journal of Cardiovascular Pharmacology, 2004, 43, 452-453.	1.9	30

#	Article	IF	CITATIONS
487	Progesterone inhibits human breast cancer cell growth through transcriptional upregulation of the cyclin-dependent kinase inhibitor p27Kip1gene. FEBS Letters, 2005, 579, 5535-5541.	2.8	30
488	FXRâ€deficiency confers increased susceptibility to torpor. FEBS Letters, 2007, 581, 5191-5198.	2.8	30
489	Association between liver X receptor α gene polymorphisms and risk of metabolic syndrome in French populations. International Journal of Obesity, 2008, 32, 421-428.	3.4	30
490	The neuron-derived orphan receptor 1 (NOR1) is induced upon human alternative macrophage polarization and stimulates the expression of markers of the M2 phenotype. Atherosclerosis, 2015, 241, 18-26.	0.8	30
491	Retinoids Issued from Hepatic Stellate Cell Lipid Droplet Loss as Potential Signaling Molecules Orchestrating a Multicellular Liver Injury Response. Cells, 2018, 7, 137.	4.1	30
492	Near-infrared light activatable hydrogels for metformin delivery. Nanoscale, 2019, 11, 15810-15820.	5.6	30
493	Electrothermal patches driving the transdermal delivery of insulin. Nanoscale Horizons, 2020, 5, 663-670.	8.0	30
494	TReP-132 Is a Novel Progesterone Receptor Coactivator Required for the Inhibition of Breast Cancer Cell Growth and Enhancement of Differentiation by Progesterone. Molecular and Cellular Biology, 2006, 26, 7632-7644.	2.3	29
495	Intestine-Specific Regulation of PPARα Gene Transcription by Liver X Receptors. Endocrinology, 2008, 149, 5128-5135.	2.8	29
496	A cholesterol tether. Nature, 2002, 417, 699-701.	27.8	28
496 497	A cholesterol tether. Nature, 2002, 417, 699-701. Liver X Receptor Activation Induces the Uptake of Cholesteryl Esters From High Density Lipoproteins in Primary Human Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2288-2295.	27.8 2.4	28 28
	Liver X Receptor Activation Induces the Uptake of Cholesteryl Esters From High Density Lipoproteins in		
497	Liver X Receptor Activation Induces the Uptake of Cholesteryl Esters From High Density Lipoproteins in Primary Human Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2288-2295. Fenofibrate Inhibits Endothelin-1 Expression by Peroxisome Proliferator $\hat{a} \in Activated Receptor$ $\hat{l} \pm \hat{a} \in Dependent and Independent Mechanisms in Human Endothelial Cells. Arteriosclerosis, Thrombosis,$	2.4	28
497 498	Liver X Receptor Activation Induces the Uptake of Cholesteryl Esters From High Density Lipoproteins in Primary Human Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2288-2295. Fenofibrate Inhibits Endothelin-1 Expression by Peroxisome Proliferator–Activated Receptor α–Dependent and Independent Mechanisms in Human Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 621-628. Adventitial Tertiary Lymphoid Organs as Potential Source of MicroRNA Biomarkers for Abdominal	2.4 2.4	28 28
497 498 499	 Liver X Receptor Activation Induces the Uptake of Cholesteryl Esters From High Density Lipoproteins in Primary Human Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2288-2295. Fenofibrate Inhibits Endothelin-1 Expression by Peroxisome Proliferator–Activated Receptor α–Dependent and Independent Mechanisms in Human Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 621-628. Adventitial Tertiary Lymphoid Organs as Potential Source of MicroRNA Biomarkers for Abdominal Aortic Aneurysm. International Journal of Molecular Sciences, 2015, 16, 11276-11293. 	2.4 2.4 4.1	28 28 28
497 498 499 500	 Liver X Receptor Activation Induces the Uptake of Cholesteryl Esters From High Density Lipoproteins in Primary Human Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2288-2295. Fenofibrate Inhibits Endothelin-1 Expression by Peroxisome Proliferator–Activated Receptor I±â€"Dependent and Independent Mechanisms in Human Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 621-628. Adventitial Tertiary Lymphoid Organs as Potential Source of MicroRNA Biomarkers for Abdominal Aortic Aneurysm. International Journal of Molecular Sciences, 2015, 16, 11276-11293. O-GlcNAcylation Links ChREBP and FXR to Glucose-Sensing. Frontiers in Endocrinology, 2014, 5, 230. Atherosclerosis: Recent trials, new targets and future directions. International Journal of 	2.4 2.4 4.1 3.5	28 28 28 28
497 498 499 500 501	 Liver X Receptor Activation Induces the Uptake of Cholesteryl Esters From High Density Lipoproteins in Primary Human Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 2288-2295. Fenofibrate Inhibits Endothelin-1 Expression by Peroxisome Proliferator–Activated Receptor I±â€"Dependent and Independent Mechanisms in Human Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 621-628. Adventitial Tertiary Lymphoid Organs as Potential Source of MicroRNA Biomarkers for Abdominal Aortic Aneurysm. International Journal of Molecular Sciences, 2015, 16, 11276-11293. O-GlcNAcylation Links ChREBP and FXR to Glucose-Sensing. Frontiers in Endocrinology, 2014, 5, 230. Atherosclerosis: Recent trials, new targets and future directions. International Journal of Cardiology, 2015, 192, 72-81. Bile acids contribute to the development of non-alcoholic steatohepatitis in mice. JHEP Reports, 2022, 	2.4 2.4 4.1 3.5 1.7	28 28 28 28 28 28

#	Article	IF	CITATIONS
505	The glucocorticoid receptor is a coâ€regulator of the orphan nuclear receptor Nurr1. Journal of Neurochemistry, 2008, 104, 777-789.	3.9	27
506	Vasoactivity, antioxidant and aphrodisiac properties of Caesalpinia benthamiana roots. Journal of Ethnopharmacology, 2008, 116, 112-119.	4.1	27
507	Control of Gene Expression by the Retinoic Acid-Related Orphan Receptor Alpha in HepG2 Human Hepatoma Cells. PLoS ONE, 2011, 6, e22545.	2.5	27
508	Coenzyme Q as an Antiadipogenic Factor. Antioxidants and Redox Signaling, 2011, 14, 403-413.	5.4	27
509	GFT505 for the treatment of nonalcoholic steatohepatitis and type 2 diabetes. Expert Opinion on Investigational Drugs, 2014, 23, 1441-1448.	4.1	27
510	Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, substrate-dependent modulators of insulin-degrading enzyme in amyloid-β hydrolysis. European Journal of Medicinal Chemistry, 2014, 79, 184-193.	5.5	27
511	Intestinal bile acid receptors are key regulators of glucose homeostasis. Proceedings of the Nutrition Society, 2017, 76, 192-202.	1.0	27
512	Circulating PCSK9 levels are not associated with the severity of hepatic steatosis and NASH in a high-risk population. Atherosclerosis, 2018, 278, 82-90.	0.8	27
513	Effects of Sex Steroids on Hepatic and Lipoprotein Lipase Activity and mRNA in the Rat. Hormone Research, 1993, 40, 184-188.	1.8	26
514	Localization of the Human OB Gene (OBS) to Chromosome 7q32 by Fluorescence in Situ Hybridization. Genomics, 1995, 28, 603-604.	2.9	26
515	Transcriptional Induction of Rat Liver Apolipoprotein A-I Gene Expression by Glucocorticoids Requires the Glucocorticoid Receptor and a Labile Cell-Specific Protein. FEBS Journal, 1996, 239, 451-459.	0.2	26
516	Metabolism of Apolipoproteins AI and AII in a Patient with Paradoxical Reduction in High-Density Lipoprotein Due to Ciprofibrate. Annals of Clinical Biochemistry, 1999, 36, 523-525.	1.6	26
517	Murine models to investigate pharmacological compounds acting as ligands of PPARs in dyslipidemia and atherosclerosis. Trends in Pharmacological Sciences, 2003, 24, 530-534.	8.7	26
518	Characterization of new PPARγ agonists: Benzimidazole derivatives—importance of positions 5 and 6, and computational studies on the binding mode. Bioorganic and Medicinal Chemistry, 2010, 18, 5885-5895.	3.0	26
519	Adipose Tissue Macrophages (ATM) of obese patients are releasing increased levels of prolactin during an inflammatory challenge: A role for prolactin in diabesity?. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 584-593.	3.8	26
520	ORP4L Facilitates Macrophage Survival via G-Protein–Coupled Signaling. Circulation Research, 2016, 119, 1296-1312.	4.5	26
521	PPARÎ ² in macrophages and atherosclerosis. Biochimie, 2017, 136, 59-64.	2.6	26
522	Circadian control of metabolism and pathological consequences of clock perturbations. Biochimie, 2017. 143. 42-50.	2.6	26

#	Article	IF	CITATIONS
523	Incretin combination therapy for the treatment of nonâ€alcoholic steatohepatitis. Diabetes, Obesity and Metabolism, 2020, 22, 1328-1338.	4.4	26
524	Sirt6 deletion in bone marrow-derived cells increases atherosclerosis – Central role of macrophage scavenger receptor 1. Journal of Molecular and Cellular Cardiology, 2020, 139, 24-32.	1.9	26
525	Integrative study of diet-induced mouse models of NAFLD identifies PPARα as a sexually dimorphic drug target. Gut, 2022, 71, 807-821.	12.1	26
526	TReP-132 Controls Cell Proliferation by Regulating the Expression of the Cyclin-Dependent Kinase Inhibitors p21WAF1/Cip1 and p27Kip1. Molecular and Cellular Biology, 2005, 25, 4335-4348.	2.3	25
527	Lipid ligand-activated transcription factors regulating lipid storage and release in human macrophages. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 486-493.	2.4	25
528	Impaired histone deacetylases 5 and 6 expression mimics the effects of obesity and hypoxia on adipocyte function. Molecular Metabolism, 2016, 5, 1200-1207.	6.5	25
529	The GLP1R Agonist Liraglutide Reduces Hyperglucagonemia Induced by the SGLT2 Inhibitor Dapagliflozin via Somatostatin Release. Cell Reports, 2019, 28, 1447-1454.e4.	6.4	25
530	Circadian and Glucocorticoid Regulation of Rev-erb Expression in Liver. Endocrinology, 2000, 141, 3799-3806.	2.8	25
531	Visfatin is induced by peroxisome proliferatorâ€activated receptor gamma in human macrophages. FEBS Journal, 2010, 277, 3308-3320.	4.7	24
532	PPARα activation differently affects microparticle content in atherosclerotic lesions and liver of a mouse model of atherosclerosis and NASH. Atherosclerosis, 2011, 218, 69-76.	0.8	24
533	The Hepatic Orosomucoid/α1-Acid Glycoprotein Gene Cluster Is Regulated by the Nuclear Bile Acid Receptor FXR. Endocrinology, 2013, 154, 3690-3701.	2.8	24
534	Structure–activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme. European Journal of Medicinal Chemistry, 2015, 90, 547-567.	5.5	24
535	Farnesoid X Receptor and Its Ligands Inhibit the Function of Platelets. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 2324-2333.	2.4	24
536	NASH-related increases in plasma bile acid levels depend on insulin resistance. JHEP Reports, 2021, 3, 100222.	4.9	24
537	Oxidized low-density lipoprotein and peroxisome-proliferator-activated receptor α down-regulate platelet-activating-factor receptor expression in human macrophages. Biochemical Journal, 2001, 354, 225.	3.7	23
538	Pro-inflammatory properties for thiazolidinediones. Biochemical Pharmacology, 2005, 69, 255-265.	4.4	23
539	Induction of CXCR2 Receptor by Peroxisome Proliferator-Activated Receptor γ in Human Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 932-939.	2.4	23
540	Bile Acid Sequestrants: Glucose-Lowering Mechanisms. Metabolic Syndrome and Related Disorders, 2010, 8, S-3-S-8.	1.3	23

#	Article	IF	CITATIONS
541	Endogenous cannabinoid receptor CB1 activation promotes vascular smooth-muscle cell proliferation and neointima formation. Journal of Lipid Research, 2013, 54, 1360-1368.	4.2	23
542	HDL does not influence the polarization of human monocytes toward an alternative phenotype. International Journal of Cardiology, 2014, 172, 179-184.	1.7	23
543	PPARs: A Potential Target for a Disease-Modifying Strategy in Stroke. Current Drug Targets, 2013, 14, 752-767.	2.1	23
544	Characterization of New PPARγ Agonists: Benzimidazole Derivatives - the Importance of Positionâ€2. ChemMedChem, 2009, 4, 1136-1142.	3.2	22
545	Is the current therapeutic armamentarium in diabetes enough to control the epidemic and its consequences? What are the current shortcomings?. Acta Diabetologica, 2009, 46, 173-181.	2.5	22
546	The logic of transcriptional regulator recruitment architecture at <i>cis</i> -regulatory modules controlling liver functions. Genome Research, 2017, 27, 985-996.	5.5	22
547	Hepatic transcriptomic signatures of statin treatment are associated with impaired glucose homeostasis in severely obese patients. BMC Medical Genomics, 2019, 12, 80.	1.5	22
548	Microbiome Modulation of the Host Adaptive Immunity through Bile Acid Modification. Cell Metabolism, 2020, 31, 445-447.	16.2	22
549	Alterations in Rev-ERBα/BMAL1 ratio and glycated hemoglobin in rotating shift workers: the EuRhythDia study. Acta Diabetologica, 2021, 58, 1111-1117.	2.5	22
550	Endoplasmic reticulum stress actively suppresses hepatic molecular identity in damaged liver. Molecular Systems Biology, 2020, 16, e9156.	7.2	22
551	Developmental extinction of liver lipoprotein lipase mRNA expression might be regulated by an NF-1-like site. FEBS Letters, 1993, 329, 89-95.	2.8	21
552	Pancreatic islet response to hyperglycemia is dependent on peroxisome proliferator-activated receptor alpha (PPARα). FEBS Letters, 2005, 579, 2284-2288.	2.8	21
553	Transcriptional regulation of macrophage cholesterol trafficking by $\mbox{PPAR}\hat{l}\pm$ and LXR. Biochemical Society Transactions, 2006, 34, 1128-1131.	3.4	21
554	Roux-en-Y gastric bypass increases systemic but not portal bile acid concentrations by decreasing hepatic bile acid uptake in minipigs. International Journal of Obesity, 2017, 41, 664-668.	3.4	21
555	Bile acids associate with glucose metabolism, but do not predict conversion from impaired fasting glucose to diabetes. Metabolism: Clinical and Experimental, 2020, 103, 154042.	3.4	21
556	Innovative transdermal delivery of insulin using gelatin methacrylate-based microneedle patches in mice and mini-pigs. Nanoscale Horizons, 2022, 7, 174-184.	8.0	21
557	Lesion Progression in apoE-Deficient Mice: Implication of Chemokines and Effect of the AT1 Angiotensin II Receptor Antagonist Irbesartan. Journal of Cardiovascular Pharmacology, 2004, 43, 191-199.	1.9	20
558	Impaired Expression of the Inducible cAMP Early Repressor Accounts for Sustained Adipose CREB Activity in Obesity. Diabetes, 2011, 60, 3169-3174.	0.6	20

#	Article	IF	CITATIONS
559	Leptin induces osteoblast differentiation of human valvular interstitial cells via the Akt and ERK pathways. Acta Diabetologica, 2017, 54, 551-560.	2.5	20
560	Deletion of fibroblast activation protein provides atheroprotection. Cardiovascular Research, 2021, 117, 1060-1069.	3.8	20
561	Intestine-liver crosstalk in Type 2 Diabetes and non-alcoholic fatty liver disease. Metabolism: Clinical and Experimental, 2021, 123, 154844.	3.4	20
562	Dyslipidemia shifts the tissue factor/tissue factor pathway inhibitor balance toward increased thrombogenicity in atherosclerotic plaques. Atherosclerosis, 2007, 195, e117-e125.	0.8	19
563	Short-term activation of liver X receptors inhibits osteoblasts but long-term activation does not have an impact on murine bone in vivo. Bone, 2011, 48, 339-346.	2.9	19
564	FXR overexpression alters adipose tissue architecture in mice and limits its storage capacity leading to metabolic derangements. Journal of Lipid Research, 2019, 60, 1547-1561.	4.2	19
565	Increased removal of beta-very low density lipoproteins after ethinyl estradiol is associated with increased mRNA levels for hepatic lipase, lipoprotein lipase, and the low density lipoprotein receptor in Watanabe heritable hyperlipidemic rabbits. Arteriosclerosis and Thrombosis: A Journal of Vascular Backoft 000 Effects 652-12591, a novel potent inhibitor of acyl-coenzyme A: cholesterol	3.9	18
566	O-acyltransferase, on human adrenocortical cells in culture11Ábbreviations: ACAT, acyl-coenzyme A: cholesterol O-acyltransferase; F 12511, (S)-2â€2,3â€2,5â€2-trimethyl-4â€2-hydroxy-α-dodecylthio-phenylacetanilic DMEM, Dulbecco's modified Eagle medium; FBS, fetal bovine serum; LDL, low-density lipoprotein; HDL, high-density lipoprotein; SR-BI, scavenger receptor class B, type I; P450scc, cytochrome P450	de; 4:4	18
567	cholesterol side-chai. Biochemical Pharmacology, 2001, 61, 387-398. Inhibition of cytokine production by the herbicide atrazine. Biochemical Pharmacology, 2003, 65, 303-308.	4.4	18
568	Liver X receptors: new players in atherogenesis?. Current Opinion in Lipidology, 2003, 14, 137-143.	2.7	18
569	Novel 1,3-dicarbonyl compounds having 2(3H)-benzazolonic heterocycles as PPARÎ ³ agonists. Bioorganic and Medicinal Chemistry, 2006, 14, 7377-7391.	3.0	18
570	Beneficial effects of fenofibrate on plaque thrombogenicity and plaque stability in atherosclerotic rabbits. Cardiovascular Pathology, 2009, 18, 140-147.	1.6	18
571	Studies towards the conception of new selective PPARβ/δligands. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4528-4532.	2.2	17
572	The farnesoid X receptor induces fetuin-B gene expression in human hepatocytes. Biochemical Journal, 2007, 407, 461-469.	3.7	17
573	4,4-Dimethyl-1,2,3,4-tetrahydroquinoline-based PPARα/γ agonists. Part. II: Synthesis and pharmacological evaluation of oxime and acidic head group structural variations. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 2683-2687.	2.2	17
574	The coronary artery diseaseâ€associated gene C6ORF105 is expressed in human macrophages under the transcriptional control of PPARγ. FEBS Letters, 2015, 589, 461-466.	2.8	17
575	Anacetrapib, but not evacetrapib, impairs endothelial function in CETP-transgenic mice in spite of marked HDL-C increase. Atherosclerosis, 2017, 257, 186-194.	0.8	17
576	CDKN2A/p16INK4a suppresses hepatic fatty acid oxidation through the AMPKα2-SIRT1-PPARα signaling pathway. Journal of Biological Chemistry, 2020, 295, 17310-17322.	3.4	17

#	Article	IF	CITATIONS
577	Two regulatory elements of similar structure and placed in tandem account for the repressive activity of the first intron of the human apolipoprotein A-II gene. Biochemical Journal, 1996, 318, 547-553.	3.7	16
578	Expression of human apolipoprotein A-I/C-III/A-IV gene cluster in mice reduces atherogenesis in response to a high fat-high cholesterol diet. FEBS Letters, 2001, 502, 16-20.	2.8	16
579	The expanding role of the bile acid receptor FXR in the small intestine. Journal of Hepatology, 2006, 44, 1213-1215.	3.7	16
580	The tumour suppressor CDKN2A/p16INK4a regulates adipogenesis and bone marrow-dependent development of perivascular adipose tissue. Diabetes and Vascular Disease Research, 2017, 14, 516-524.	2.0	16
581	Brain insulin response and peripheral metabolic changes in a Tau transgenic mouse model. Neurobiology of Disease, 2019, 125, 14-22.	4.4	16
582	Altered PPARÎ ³ Expression Promotes Myelin-Induced Foam Cell Formation in Macrophages in Multiple Sclerosis. International Journal of Molecular Sciences, 2020, 21, 9329.	4.1	16
583	Sex-regulated gene dosage effect of PPARα on synaptic plasticity. Life Science Alliance, 2019, 2, e201800262.	2.8	16
584	Lipoprotein lipase expression in undifferentiated hepatoma cells is regulated by progesterone and protein kinase A. Biochemistry, 1992, 31, 10121-10128.	2.5	15
585	Novel non-carboxylic acid retinoids: 1,2,4-Oxadiazol-5-one derivatives. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 489-492.	2.2	15
586	A pan-PPAR ligand induces hepatic fatty acid oxidation in PPARαâ^'/â^' mice possibly through PGC-1 mediated PPARδ coactivation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 1076-1083.	2.4	15
587	Pharmacological interventions in human HDL metabolism. Current Opinion in Lipidology, 2013, 24, 500-509.	2.7	15
588	Hepatic trans-Golgi action coordinated by the GTPase ARFRP1 is crucial for lipoprotein lipidation and assembly. Journal of Lipid Research, 2014, 55, 41-52.	4.2	15
589	Failing FXR expression in the liver links aging to hepatic steatosis. Journal of Hepatology, 2014, 60, 689-690.	3.7	15
590	Bariatric surgery, lipoprotein metabolism and cardiovascular risk. Current Opinion in Lipidology, 2015, 26, 317-324.	2.7	15
591	Sox17 Regulates Liver Lipid Metabolism and Adaptation to Fasting. PLoS ONE, 2014, 9, e104925.	2.5	15
592	Growth hormone normalizes low-density lipoprotein receptor gene expression in hypothyroid rats. Metabolism: Clinical and Experimental, 1996, 45, 680-685.	3.4	14
593	Inter-subject differences in constitutive expression levels of the clock gene in man. Diabetes and Vascular Disease Research, 2007, 4, 39-43.	2.0	14
594	Efficacy of peroxisome proliferator-activated receptor agonists in diabetes and coronary artery disease. Current Atherosclerosis Reports, 2009, 11, 281-288.	4.8	14

#	Article	IF	CITATIONS
595	Obesity resistant mechanisms in the Lean polygenic mouse model as indicated by liver transcriptome and expression of selected genes in skeletal muscle. BMC Genomics, 2011, 12, 96.	2.8	14
596	Neuroprostanes, produced by free-radical mediated peroxidation of DHA, inhibit the inflammatory response of human macrophages. Free Radical Biology and Medicine, 2014, 75, S15.	2.9	14
597	Obesity Paradox in the Clinical Significance of Effective Prosthetic Orifice Area After Aortic Valve Replacement. JACC: Cardiovascular Imaging, 2019, 12, 208-210.	5.3	14
598	Saturated Fatty Acids Promote GDF15 Expression in Human Macrophages through the PERK/eIF2/CHOP Signaling Pathway. Nutrients, 2020, 12, 3771.	4.1	14
599	Bone Marrow p16INK4a-Deficiency Does Not Modulate Obesity, Glucose Homeostasis or Atherosclerosis Development. PLoS ONE, 2012, 7, e32440.	2.5	14
600	The Elongation Complex Components BRD4 and MLLT3/AF9 Are Transcriptional Coactivators of Nuclear Retinoid Receptors. PLoS ONE, 2013, 8, e64880.	2.5	14
601	Apolipoprotein CIII. Circulation Research, 2008, 103, 1348-1350.	4.5	13
602	Effect of Oxime Ether Incorporation in Acyl Indole Derivatives on PPAR Subtype Selectivity. ChemMedChem, 2012, 7, 2179-2193.	3.2	13
603	Palmitate increases <i>Nur77</i> expression by modulating ZBP89 and Sp1 binding to the <i>Nur77</i> proximal promoter in pancreatic βâ€cells. FEBS Letters, 2013, 587, 3883-3890.	2.8	13
604	Inactivation of the Nuclear Orphan Receptor COUP-TFII by Small Chemicals. ACS Chemical Biology, 2017, 12, 654-663.	3.4	13
605	Mitochondria and endoplasmic reticulum: Targets for a better insulin sensitivity in skeletal muscle?. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 901-916.	2.4	13
606	Epicardial fat amount is associated with the magnitude of left ventricular remodeling in aortic stenosis. International Journal of Cardiovascular Imaging, 2019, 35, 267-273.	1.5	13
607	Basal transcriptional activity and cyclic adenosine 3',5'-monophosphate responsiveness of the human cytochrome P450scc promoter transfected into MA-10 Leydig cells. Endocrinology, 1993, 132, 546-552.	2.8	13
608	Regulation of Endothelial Nitric Oxide Synthase by PPAR Agonists: Molecular and Clinical Perspectives. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 619-621.	2.4	12
609	The Gene Encoding Fibrinogen-β Is a Target for Retinoic Acid Receptor-Related Orphan Receptor α. Molecular Endocrinology, 2005, 19, 2517-2526.	3.7	12
610	PPARs/RXRs in Cardiovascular Physiology and Disease. PPAR Research, 2008, 2008, 1-1.	2.4	12
611	Association Between a Thyroid Hormone Receptor-α Gene Polymorphism and Blood Pressure but Not With Coronary Heart Disease Risk. American Journal of Hypertension, 2011, 24, 1027-1034.	2.0	12
612	<scp>PPAR</scp> α is involved in the multitargeted effects of a pretreatment with atorvastatin in experimental stroke. Fundamental and Clinical Pharmacology, 2014, 28, 294-302.	1.9	12

#	Article	IF	CITATIONS
613	From cardiac mitochondrial dysfunction to clinical arrhythmias. International Journal of Cardiology, 2015, 184, 597-599.	1.7	12
614	Comment on Patel et al. ACE2 Deficiency Worsens Epicardial Adipose Tissue Inflammation and Cardiac Dysfunction in Response to Diet-Induced Obesity. Diabetes 2016;65:85–95. Diabetes, 2016, 65, e1-e2.	0.6	12
615	Ffar2 expression regulates leukaemic cell growth in vivo. British Journal of Cancer, 2017, 117, 1336-1340.	6.4	12
616	Time to Check the Clock in Cardiovascular Research and Medicine. Circulation Research, 2018, 123, 648-650.	4.5	12
617	Mechanisms Underlying the Functional Cooperation Between PPARα and GRα to Attenuate Inflammatory Responses. Frontiers in Immunology, 2019, 10, 1769.	4.8	12
618	Human Aortic Valve Interstitial Cells Display Proangiogenic Properties During Calcific Aortic Valve Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 41, 415-429.	2.4	12
619	Complete functional rescue of the ABCA1â^'/â^' mouse by human BAC transgenesis. Journal of Lipid Research, 2005, 46, 1113-1123.	4.2	11
620	Generation and characterization of a humanized PPARδ mouse model. British Journal of Pharmacology, 2011, 164, 192-208.	5.4	11
621	Soaping Up Type 2 Diabetes With Bile Acids?. Diabetes, 2013, 62, 3987-3989.	0.6	11
622	Risperidone-induced metabolic dysfunction is attenuated by Curcuma longa extract administration in mice. Metabolic Brain Disease, 2018, 33, 63-77.	2.9	11
623	GIANT: galaxy-based tool for interactive analysis of transcriptomic data. Scientific Reports, 2020, 10, 19835.	3.3	11
624	Light therapy improves diurnal blood pressure control in night shift workers via reduction of catecholamines: the EuRhythDia study. Journal of Hypertension, 2021, 39, 1678-1688.	0.5	11
625	Expression and Regulation of the Lipoprotein Lipase Gene in Human Adrenal Cortex. Journal of Biological Chemistry, 1996, 271, 17425-17432.	3.4	10
626	Cycle Sequencing on Large DNA Templates. BioTechniques, 1997, 23, 1034-1036.	1.8	10
627	FUNCTION OF THE TRANSCRIPTIONAL REGULATING PROTEIN OF 132 kDa (TReP-132) ON HUMAN P450scc GENE EXPRESSION. Endocrine Research, 2002, 28, 559-574.	1.2	10
628	HMG-CoA reductase inhibition and PPAR-alpha activation both inhibit cyclosporin A induced endothelin-1 secretion in cultured endothelial cells. Clinical Science, 2002, 103, 81S-83S.	4.3	10
629	The transcriptional regulating protein of 132 kDa (TReP-132) differentially influences steroidogenic pathways in human adrenal NCI-H295 cells. Journal of Molecular Endocrinology, 2004, 32, 557-569.	2.5	10
630	Genetically-engineered animals as research models for atherosclerosis : their use for the characterization of PPAR agonists in the treatment of cardiometabolic disorders. Frontiers in Bioscience - Landmark, 2007, 12, 4132.	3.0	10

#	Article	IF	CITATIONS
631	Effects of <i>Microdesmis keayana</i> alkaloids on vascular parameters of erectile dysfunction. Phytotherapy Research, 2009, 23, 892-895.	5.8	10
632	Fibrates in CVD: a step towards personalised medicine. Lancet, The, 2010, 375, 1847-1848.	13.7	10
633	Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages. Biochemical and Biophysical Research Communications, 2011, 404, 458-462.	2.1	10
634	Naturally improving insulin resistance with amorfrutins. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7136-7137.	7.1	10
635	Impact of Endotoxin Challenge in Obese Pigs. Shock, 2014, 41, 546-553.	2.1	10
636	Retrograde cholesterol transport in the human Caco-2/TC7 cell line: a model to study trans-intestinal cholesterol excretion in atherogenic and diabetic dyslipidemia. Acta Diabetologica, 2017, 54, 191-199.	2.5	10
637	Organizing combinatorial transcription factor recruitment at <i>cis</i> -regulatory modules. Transcription, 2018, 9, 233-239.	3.1	10
638	Clinical significance of electrocardiographic markers of myocardial damage prior to aortic valve replacement. International Journal of Cardiology, 2020, 307, 130-135.	1.7	10
639	Development and implementation of a cell-based assay to discover agonists of the nuclear receptor REV-ERBα. Journal of Biological Methods, 2018, 5, e94.	0.6	10
640	Therapeutical effects of PPAR agonists assessed by biomarker modulation. Biomarkers, 2005, 10, 30-36.	1.9	9
641	Fenofibrate reverses the decline in HDL cholesterol in mice overexpressing human phospholipid transfer protein. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1738, 48-53.	2.4	9
642	[4-(2H-1,2,3-Benzotriazol-2-yl)phenoxy]alkanoic Acids as Agonists of Peroxisome Proliferator-Activated Receptors (PPARs). Chemistry and Biodiversity, 2006, 3, 385-395.	2.1	9
643	How to modulate FXR activity to treat the Metabolic Syndrome. Drug Discovery Today Disease Mechanisms, 2009, 6, e55-e64.	0.8	9
644	CIDEA interacts with liver X receptors in white fat cells. FEBS Letters, 2011, 585, 744-748.	2.8	9
645	The Novel Antibacterial Compound Walrycin A Induces Human PXR Transcriptional Activity. Toxicological Sciences, 2012, 127, 225-235.	3.1	9
646	Synthesis and evaluation of new polyenic compounds as potential PPARs modulators. Organic and Biomolecular Chemistry, 2012, 10, 6169.	2.8	9
647	Retinoids and nuclear retinoid receptors in white and brown adipose tissues: physiopathologic aspects. Hormone Molecular Biology and Clinical Investigation, 2013, 14, 75-86.	0.7	9
648	Metabolic effects of bile acid sequestration. Current Opinion in Endocrinology, Diabetes and Obesity, 2016, 23, 138-144.	2.3	9

#	Article	IF	CITATIONS
649	Fasting the Microbiota to Improve Metabolism?. Cell Metabolism, 2017, 26, 584-585.	16.2	9
650	Peri-operative acute kidney injury upon cardiac surgery time-of-day. International Journal of Cardiology, 2018, 272, 54-59.	1.7	9
651	Beyond the Rule of 5: Impact of PEGylation with Various Polymer Sizes on Pharmacokinetic Properties, Structure–Properties Relationships of mPEGylated Small Agonists of TGR5 Receptor. Journal of Medicinal Chemistry, 2021, 64, 1593-1610.	6.4	9
652	The ALGOVUE Clinical Trial: Effects of the Daily Consumption of Eggs Enriched with Lutein and Docosahexaenoic Acid on Plasma Composition and Macular Pigment Optical Density. Nutrients, 2021, 13, 3347.	4.1	9
653	The hepatic compensatory response to elevated systemic sulfide promotes diabetes. Cell Reports, 2021, 37, 109958.	6.4	9
654	Posttranscriptional Regulation of the Human LDL Receptor by the U2-Spliceosome. Circulation Research, 2022, 130, 80-95.	4.5	9
655	Farnesoid X Receptor Activation in Brain Alters Brown Adipose Tissue Function via the Sympathetic System. Frontiers in Molecular Neuroscience, 2021, 14, 808603.	2.9	9
656	The effects of probucol on lipoprotein metabolism in the rat. Lipids and Lipid Metabolism, 1991, 1085, 131-135.	2.6	8
657	Potential roles of ROR-α in cardiovascular endocrinology. Nuclear Receptor Signaling, 2003, 1, nrs.01011.	1.0	8
658	FXR: More than a Bile Acid Receptor?. Endocrinology, 2006, 147, 4022-4024.	2.8	8
659	Cholesterol 7α-Hydroxylase Deficiency in Mice on an APOE*3-Leiden Background Increases Hepatic ABCA1 mRNA Expression and HDL-Cholesterol. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2724-2730.	2.4	8
660	Screening strategy to generate cell specific recombination: a case report with the RIP-Cre mice. Transgenic Research, 2015, 24, 803-812.	2.4	8
661	Natalizumab Treatment Modulates Peroxisome Proliferator-Activated Receptors Expression in Women with Multiple Sclerosis. PPAR Research, 2016, 2016, 1-5.	2.4	8
662	Timed physical exercise does not influence circadian rhythms and glucose tolerance in rotating night shift workers: The EuRhythDia study. Diabetes and Vascular Disease Research, 2020, 17, 147916412095061.	2.0	8
663	Characterization of one anastomosis gastric bypass and impact of biliary and common limbs on bile acid and postprandial glucose metabolism in a minipig model. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E772-E783.	3.5	8
664	IFNÎ ³ -producing NK cells in adipose tissue are associated with hyperglycemia and insulin resistance in obese women. International Journal of Obesity, 2021, 45, 1607-1617.	3.4	8
665	Day-Time Declamping Is Associated with Better Outcomes in Kidney Transplantation: The Circarein Study. Journal of Clinical Medicine, 2021, 10, 2322.	2.4	8
666	Regulation of PPARα by APP in Alzheimer disease affects the pharmacological modulation of synaptic activity. JCI Insight, 2021, 6, .	5.0	8

#	Article	IF	CITATIONS
667	Enterohepatic Takeda G-Protein Coupled Receptor 5 Agonism in Metabolic Dysfunction-Associated Fatty Liver Disease and Related Glucose Dysmetabolism. Nutrients, 2022, 14, 2707.	4.1	8
668	Peroxisome Proliferator-Activated Receptor β/Ĩ´: A novel target for the reduction of atherosclerosis. Drug Discovery Today: Therapeutic Strategies, 2005, 2, 237-243.	0.5	7
669	Rev-erbα2 mRNA Encodes a Stable Protein with a Potential Role in Circadian Clock Regulation. Molecular Endocrinology, 2009, 23, 630-639.	3.7	7
670	The ubiquitous transcription factor CTCF promotes lineage-specific epigenomic remodeling and establishment of transcriptional networks driving cell differentiation. Nucleus, 2015, 6, 15-18.	2.2	7
671	Perilipin2/adipophilin and ApoA-1 team up to combat atherosclerosis. Cardiovascular Research, 2016, 109, 193-195.	3.8	7
672	Anti-diabetic activity of fused PPAR ^ĵ 3-SIRT1 ligands with limited body-weight gain by mimicking calorie restriction and decreasing SGK1 expression. European Journal of Medicinal Chemistry, 2017, 137, 310-326.	5.5	7
673	Mathematical models converge on PGC1α as the key metabolic integrator of SIRT1 and AMPK regulation of the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13171-13172.	7.1	7
674	The LPS/D-Galactosamine-Induced Fulminant Hepatitis Model to Assess the Role of Ligand-Activated Nuclear Receptors on the NLRP3 Inflammasome Pathway In Vivo. Methods in Molecular Biology, 2019, 1951, 189-207.	0.9	7
675	Emerging Small Molecule Drugs. Handbook of Experimental Pharmacology, 2015, 224, 617-630.	1.8	7
676	Lipidomics and metabolomics signatures of SARS-CoV-2 mediators/receptors in peripheral leukocytes, jejunum and colon. Computational and Structural Biotechnology Journal, 2021, 19, 6080-6089.	4.1	7
677	New insights into obesity genes. Diabetologia, 1996, 39, 1528-1531.	6.3	6
678	The clinical significance of PPARα and γ agonism. British Journal of Diabetes and Vascular Disease, 2002, 2, S28-S31.	0.6	6
679	Nur77turing Macrophages in Atherosclerosis. Circulation Research, 2012, 110, 375-377.	4.5	6
680	Cholesterylâ€ester transfer protein (CETP): A Kupffer cell marker linking hepatic inflammation with atherogenic dyslipidemia?. Hepatology, 2015, 62, 1659-1661.	7.3	6
681	Transducinâ€like enhancer of splitâ€1 is expressed and functional in human macrophages. FEBS Letters, 2016, 590, 43-52.	2.8	6
682	Transcription profiling in the liver of undernourished male rat offspring reveals altered lipid metabolism pathways and predisposition to hepatic steatosis. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E1094-E1107.	3.5	6
683	Synthesis of benzopyran derivatives as PPARα and/or PPARγ activators. Bioorganic and Medicinal Chemistry, 2019, 27, 115162.	3.0	6
684	Deletion of the nuclear receptor RORα in macrophages does not modify the development of obesity, insulin resistance and NASH. Scientific Reports, 2020, 10, 21095.	3.3	6

#	Article	IF	CITATIONS
685	Diabetes mellitus and cardiovascular mortality across the spectrum of aortic stenosis. Heart, 2022, 108, 1815-1821.	2.9	6
686	Growth hormone normalizes hepatic lipase in hypothyroid rat liver. Metabolism: Clinical and Experimental, 1993, 42, 669-671.	3.4	5
687	Efficient Gene Regulation by PPARÎ ³ and Thiazolidinediones in Skeletal Muscle and Heart. Molecular Therapy, 2002, 6, 265-271.	8.2	5
688	Circumventing glucocorticoid-mediated hyperinsulinemia via the activation of PPARα. Cell Cycle, 2009, 8, 2311-2312.	2.6	5
689	SREBF2 -Embedded mir33 Links the Nuclear Bile Acid Receptor FXR to Cholesterol and Lipoprotein Metabolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 748-749.	2.4	5
690	An oxidative stress paradox: time for a conceptual change?. Diabetologia, 2016, 59, 2514-2517.	6.3	5
691	A new non-invasive diagnostic score to monitor change in disease activity and predict fibrosis evolution in patients with NASH. Journal of Hepatology, 2017, 66, S110.	3.7	5
692	Perspectives on the use of super-enhancers as a defining feature of cell/tissue-identity genes. Epigenomics, 2020, 12, 715-723.	2.1	5
693	Synthesis of 2-Prenylated Alkoxylated Benzopyrans by Horner–Wadsworth–Emmons Olefination with PPARα∫γ Agonist Activity. ACS Medicinal Chemistry Letters, 2021, 12, 1783-1786.	2.8	5
694	Synthesis and biological studies of "Polycerasoidol―and "trans-δ-Tocotrienolic acid―derivatives as PPARα and/or PPARI³ agonists. Bioorganic and Medicinal Chemistry, 2022, 53, 116532.	3.0	5
695	Enterohepatic, Gluco-metabolic, and Gut Microbial Characterization of Individuals With Bile Acid Malabsorption. , 2022, 1, 299-312.		5
696	Hypolipidemic effects of R103757, a potent stereoselective inhibitor of microsomal triglyceride transfer protein (MTP). Atherosclerosis, 1999, 144, 38.	0.8	4
697	PPARα deficiency does not modify age dependency but prevents high fat diet increase in plasma PAI-1 as well as insulin resistance. Thrombosis and Haemostasis, 2004, 91, 1051-1052.	3.4	4
698	Measuring biomarkers to assess the therapeutic effects of PPAR agonists?. Pharmacogenomics, 2007, 8, 1567-1580.	1.3	4
699	Peroxisome Proliferator-Activated Receptor <i>γ</i> Induces the Expression of Tissue Factor Pathway Inhibitor-1 (TFPI-1) in Human Macrophages. PPAR Research, 2016, 2016, 1-9.	2.4	4
700	Drug repurposing screen identifies novel small molecule compounds with potent antifibrotic properties. Journal of Hepatology, 2017, 66, S605.	3.7	4
701	Liver-specific RORα deletion does not affect the metabolic susceptibility to western style diet feeding. Molecular Metabolism, 2019, 23, 82-87.	6.5	4
702	Effect of 6-Benzoyl-benzothiazol-2-one scaffold on the pharmacological profile of α-alkoxyphenylpropionic acid derived PPAR agonists. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 524-538.	5.2	4

#	Article	IF	CITATIONS
703	Association of 1-deoxy-sphingolipids with steatosis but not steatohepatitis nor fibrosis in non-alcoholic fatty liver disease. Acta Diabetologica, 2021, 58, 319-327.	2.5	4
704	Endospanin-2 enhances skeletal muscle energy metabolism and running endurance capacity. JCI Insight, 2018, 3, .	5.0	4
705	Enterocyte superoxide dismutase 2 deletion drives obesity. IScience, 2022, 25, 103707.	4.1	4
706	Circulating Monocyte Subsets and Transcatheter Aortic Valve Replacement. International Journal of Molecular Sciences, 2022, 23, 5303.	4.1	4
707	No short-term effect of oral isotretinoin (13-cis retinoic acid) on lipoprotein(a) and HDL subclasses LP-A-I and LP-A-I:A-II in healthy volunteers. Journal of Internal Medicine, 1999, 246, 120-122.	6.0	3
708	The mitochondrion is the principal target for nutritional and pharmacological control of plasma triglyceride. Lipids, 1999, 34, S167-S167.	1.7	3
709	Glitazones in the treatment of cardiovascular risk factors. Fundamental and Clinical Pharmacology, 2007, 21, 7-13.	1.9	3
710	Circadian Control of Epigenetic Modifications Modulates Metabolism. Circulation Research, 2011, 109, 353-355.	4.5	3
711	Response to the Letter by Finn et al. Circulation Research, 2012, 110, .	4.5	3
712	Long-term prognostic value of preprocedural adiponectin levels in patients undergoing percutaneous coronary intervention. International Journal of Cardiology, 2013, 168, 4921-4924.	1.7	3
713	Next-Generation Sequencing (NGS) of two independent cohorts identifies eleven circulating miRNAs for diagnosis of NASH and fibrosis. Journal of Hepatology, 2017, 66, S110-S111.	3.7	3
714	A deep-learning approach for pattern recognition allows rapid and reproducible quantification of histological NASH parameters: Integration into the QuPath platform. Journal of Hepatology, 2018, 68, S123.	3.7	3
715	Apolipoprotein A5 controls fructose-induced metabolic dysregulation in mice. Nutrition, Metabolism and Cardiovascular Diseases, 2021, 31, 972-978.	2.6	3
716	Ppar-Alpha in Lipid and Lipoprotein Metabolism, Vascular Inflammation and Atherosclerosis. Progress in Experimental Cardiology, 2003, , 3-16.	0.0	3
717	Nouvelles conceptions sur le mode d'action des fibrates et prospectives thérapeutiques de l'athérosclérose. Bulletin De L'Academie Nationale De Medecine, 2001, 185, 63-75.	0.0	3
718	Identification of indole-based activators of insulin degrading enzyme. European Journal of Medicinal Chemistry, 2022, 228, 113982.	5.5	3
719	Apolipoprotein F is reduced in humans with steatosis and controls plasma triglycerideâ€rich lipoprotein metabolism. Hepatology, 2023, 77, 1287-1302.	7.3	3
720	Regulation of CLA-1 (CD36 and limp II analogous I) by activators of peroxisome proliferator activated receptors (PPARS). Atherosclerosis, 1999, 144, 112.	0.8	2

#	Article	IF	CITATIONS
721	New roles for PPARs in cholesterol homeostasis. Trends in Pharmacological Sciences, 2001, 22, 444.	8.7	2
722	Review: Vascular protective effects of peroxisome proliferator-activated receptor agonists. British Journal of Diabetes and Vascular Disease, 2005, 5, 126-132.	0.6	2
723	Overview of the Measurement of Lipids and Lipoproteins in Mice. Current Protocols in Mouse Biology, 2011, 1, 265-277.	1.2	2
724	Free leptin, carotid plaque phenotype and relevance to related symptomatology: Insights from the OPAL-Lille carotid endarterectomy study. International Journal of Cardiology, 2013, 168, 4879-4881.	1.7	2
725	Gamma radiation production using channeled positron annihilation in crystals. Laser Physics Letters, 2015, 12, 076002.	1.4	2
726	PLPNA3 Status in Nash is Associated with Increased Histological Severity at Baseline but Not with Response to Therapy in the Golden-505 Elafibranor Trial. Journal of Hepatology, 2016, 64, S147.	3.7	2
727	A New Method including the Quantification of Circulating Mirnas Allows the Efficient Identification of Nash Patients at Risk who should be Treated. Journal of Hepatology, 2016, 64, S717.	3.7	2
728	FRI-355-Elafibranor, a drug candidate for first line NASH monotherapy and a universal backbone for drug combination treatment. Journal of Hepatology, 2019, 70, e551.	3.7	2
729	An optimized protocol with a stepwise approach to identify specific nuclear receptor ligands from cultured mammalian cells. STAR Protocols, 2021, 2, 100658.	1.2	2
730	The Circadian Clock and Obesity. Handbook of Experimental Pharmacology, 2022, , 29-56.	1.8	2
731	1.P.194 Thiazolidinediones exert a hypotriglyceridemic effect by a distinct, but complementary mechanism relative to fibrates. Atherosclerosis, 1997, 134, 57-58.	0.8	1
732	Fibrates suppress bile acid synthesis via PPARα-mediated down-regulation of cholesterol 7α-hydroxylase and sterol 27-hydroxylase gene expression. Atherosclerosis, 1999, 144, 23.	0.8	1
733	Regulation of macrophage lipoprotein lipase expression by activators of peroxisome proliferator-activated receptors. Atherosclerosis, 1999, 144, 146.	0.8	1
734	Nuclear transcription factors: new opportunities for lipid lowering. Proceedings of the Nutrition Society, 2000, 59, 433-433.	1.0	1
735	Induction of MDR2 P-glycoprotein (PGP) by fibrates is mediated by peroxisome proliferator-activated receptor alpha (PPARI \pm) in the mouse. Journal of Hepatology, 2000, 32, 119.	3.7	1
736	W15-O-003 Atheroprotective effect of the rexinoid targretin in a murine model of atherosclerosis. Atherosclerosis Supplements, 2005, 6, 96.	1.2	1
737	Th-W60:3 Acute anti-inflammatory properties of statins involve peroxisome proliferator-activated receptor-alpha via inhibition of the PKC signalling pathway. Atherosclerosis Supplements, 2006, 7, 487.	1.2	1

#	Article	IF	CITATIONS
739	Introduction on the ATVB Review Series "Nuclear Receptors in Metabolism and Cardiovascular Disease― Arteriosclerosis, Thrombosis, and Vascular Biology, 2010, 30, 1504-1505.	2.4	1
740	Which is the eligible patient to be treated with pioglitazone? The expert view. Journal of Endocrinological Investigation, 2011, 34, 781-787.	3.3	1
741	PPAR SUMOylation: Some Useful Experimental Tips. Methods in Molecular Biology, 2013, 952, 145-161.	0.9	1
742	DCo(H2)ding the Metabolic Functions of SIRT1 in the Intestine. Gastroenterology, 2014, 146, 893-896.	1.3	1
743	Role of the nuclear receptor Rev-erb-alpha in the development of atherosclerosis. Atherosclerosis, 2015, 241, e6.	0.8	1
744	RORgt Inhibition in the Liver Prevents Hepatic Fibrosis Progression, a Proof of Concept Study with a Potent, First in Class, Hepatocentric RORgt Inverse Agonist. Journal of Hepatology, 2016, 64, S523.	3.7	1
745	Relationship between Baseline Hepatic Disease Severity and the Cardiometabolic and Anti-Inflammatory Effects of Elafibranor in Patients with Non-Alcoholic Steatohepatitis. Journal of Hepatology, 2016, 64, S499-S500.	3.7	1
746	Understanding lipid metabolism through hepatic steat-omics. Nature Reviews Endocrinology, 2019, 15, 321-322.	9.6	1
747	Differential unfolded protein response in skeletal muscle from non-diabetic glucose tolerant or intolerant patients with obesity before and after bariatric surgery. Acta Diabetologica, 2020, 57, 819-826.	2.5	1
748	Role of PPARs in Inflammation, Atherosclerosis, and Thrombosis. Medical Science Symposia Series, 2002, , 25-34.	0.0	1
749	PPARs and Atherosclerosis. , 2000, , 88-95.		1
750	4.P.304 HDL (high density lipoprotein) and LDL (low density lipoprotein) receptors regulation in human adrenal cortex. Atherosclerosis, 1997, 134, 360.	0.8	0
751	4.P.367 Transcription factor genes controlling high density lipoprotein metabolism. Atherosclerosis, 1997, 134, 374.	0.8	0
752	4.P.263 Coordinate regulation of the expression of the fatty acid transporter protein (FATP) and acyl CoA synthetase (ACS) genes by PPARα and PPARγ activators. Atherosclerosis, 1997, 134, 351.	0.8	0
753	1.P.174 The mitochondrion is the principal target for nutritional and pharmacological control of triglyceride metabolism. Atherosclerosis, 1997, 134, 53.	0.8	0
754	1.P.199 The underlying mechanism of the hypolipidemic effect of 3-thia fatty acids. Atherosclerosis, 1997, 134, 58-59.	0.8	0
755	2.P.139 Effects of oral isotretinoin (13-cis retinoic acid) on lipoprotein(a) and HDL subclasses lpA-I and lpA-I: A-II in healthy volunteers. Atherosclerosis, 1997, 134, 145.	0.8	0
756	High level expression of PPARÎ ³ in differentiated colon epithelium. Gastroenterology, 1998, 114, A391.	1.3	0

#	Article	IF	CITATIONS
757	11. Nuclear receptors as targets to modulate HDL levels. Atherosclerosis, 1999, 146, S15.	0.8	0
758	Effects of F 12511, a potent ACAT inhibitor, on human adrenocortical cells in culture. Atherosclerosis, 1999, 144, 28.	0.8	0
759	Le rÃ1e de ses activateurs dans la régulation de l'expression des gènes impliqués dans le métabolisme des lipoprotéines, l'inflammation vasculaire et l'athérosclérose. Annales De L'Institut Pasteur / Actualités, 2000, 11, 89-106.	0.1	0
760	Peroxisome proliferator-activator receptor-α activator (PPAR-α) dose not inhibit the activation of human hepatic stellate cells by IL-1β. Journal of Hepatology, 2003, 38, 82.	3.7	0
761	PPARs and atherosclerosis. Advances in Molecular and Cell Biology, 2003, 33, 543-560.	0.1	0
762	Different ways to regulate the PPAR\$alpha; stability. Biochemical and Biophysical Research Communications, 2004, 319, 663-663.	2.1	0
763	$\ensuremath{PPAR\hat{l}}\xspace$ controlling HDL metabolism and atherosclerosis. International Congress Series, 2004, 1262, 215-219.	0.2	0
764	W15-IS-001 PPARS as targets for anti-atherosclerotic therapies. Atherosclerosis Supplements, 2005, 6, 95.	1.2	0
765	W15-IS-002 Role of farnesoid X receptor (FXR) in control of plasma lipid levels. Atherosclerosis Supplements, 2005, 6, 95-96.	1.2	0
766	Mo-W6:1 Metabolic and vascular control by lipid-sensing nuclear receptors: Role of the peroxisome proliferator-activated receptor-alpha as a mediator of the pleiotropic effects of statins. Atherosclerosis Supplements, 2006, 7, 20-21.	1.2	0
767	Transcriptional regulation of macrophage cholesterol trafficking by PPARα and LXR. Biochemical Society Transactions, 2007, 35, 165-165.	3.4	0
768	Modulating liver inflammation: a crucial role for cholesterol. Chemistry and Physics of Lipids, 2008, 154, S14.	3.2	0
769	A central role for cholesterol metabolism and inflammation during the inhibition of non-alcoholic steatohepatitis with a synthetic PPARα agonist. Chemistry and Physics of Lipids, 2008, 154, S56.	3.2	0
770	STATINS INCREASE EXPRESSION OF PLA2G7 IN MOUSE PERITONEAL MACROPHAGES. Atherosclerosis Supplements, 2008, 9, 201.	1.2	0
771	50 PPARA ACTIVATION DIFFERENTLY AFFECTS MICROPARTICLE CONTENT IN ATHEROSCLEROTIC LESIONS AND LIVER OF A MOUSE MODEL OF ATHEROSCLEROSIS AND NASH. Atherosclerosis Supplements, 2011, 12, 11.	1.2	0
772	446 ATHEROSCLEROTIC LESION REMODELLING IN REV-ERBα-DEFICIENT MICE. Atherosclerosis Supplements, 2011, 12, 95.	1.2	0
773	839 SERUM APOLIPOPROTEIN CIII LEVELS DECLINE AFTER WEIGHT LOSS INDUCED IMPROVEMENT IN HEPATIC STEATOSIS. Journal of Hepatology, 2011, 54, S335-S336.	3.7	0
774	1334 CORRELATION OF HUMAN LIVER PPAR GENE EXPRESSION WITH HISTOLOGICAL SEVERITY OF NASH AND ASSOCIATED METABOLIC DERANGEMENTS: RATIONALE FOR TARGETED THERAPY. Journal of Hepatology, 2013, 58, S538.	3.7	0

#	Article	IF	CITATIONS
775	Liver X receptor activation decreases chylomicron assembly and improves post-prandial triglyceridemia via intestinal sr-bi downregulation. Atherosclerosis, 2014, 235, e33.	0.8	0
776	P263 STEATOSIS-INDEPENDENT PREVENTION OF LIVER FIBROSIS VIA THE TRANSREPRESSIVE ACTIVITY OF PPARa. Journal of Hepatology, 2014, 60, S152-S153.	3.7	0
777	Macrophage-specific inactivation of the nuclear receptor ROR-alpha leads to increased atherosclerosis in mouse. Atherosclerosis, 2014, 235, e20.	0.8	0
778	MiR-206 controls LXR-alpha expression and promotes LXR-mediated cholesterol efflux in macrophages. Atherosclerosis, 2014, 235, e39.	0.8	0
779	Apolipoprotein a5-deficiency promotes cardiac glucose metabolism and protects against acute myocardial stresses. Atherosclerosis, 2014, 235, e45.	0.8	0
780	A Post-Hoc Analysis ofthe Golden505 Trial Demonstrates Histological and Cardiometabolic Efficacy of Elafibranor-120 Mg in Patients with Moderate or Severe Nash That Are Eligible for Pharmacotherapy. Journal of Hepatology, 2016, 64, S192.	3.7	0
781	The Identification of Novel Small Molecule Compounds with Potent Anti-Fibrotic Properties by Phenotypic Screening of Primary Human Stellate Cells. Journal of Hepatology, 2016, 64, S712.	3.7	0
782	Omentin-1, epicardial fat and coronary artery disease. Atherosclerosis, 2016, 255, 224-225.	0.8	0
783	The PPARa-regulated dermatopontin is an important contributor to the liver fibrotic response in mouse models and has relevance to fibrosis progression in non-alcoholic fatty liver disease patients. Journal of Hepatology, 2017, 66, S165.	3.7	0
784	Paired biopsy analysis of human liver transcriptome before and 1 year after bariatric surgery identifies a restricted set of inflammation- and extracellular matrix-related genes as pivotal in NASH and fibrosis pathogenesis. Journal of Hepatology, 2017, 66, S593-S594.	3.7	0
785	Role of the nuclear receptor Rev-erb-alpha in the development of vascular calcification. Atherosclerosis, 2017, 263, e19.	0.8	0
786	375 Psoriasis-like inflammation in K14PPARβ/δtransgenic mice selectively overexpressing PPARβ/δin keratinocytes. Journal of Investigative Dermatology, 2017, 137, S256.	0.7	0
787	Daytime variations in perioperative myocardial injury – Authors' reply. Lancet, The, 2018, 391, 2106.	13.7	0
788	The Nuclear Receptor Rev-erb-α Controls the Development of Vascular Calcification. Atherosclerosis Supplements, 2018, 32, 107.	1.2	0
789	PPAR (peroxisome proliferator-activated receptors) et paroi vasculaire : implications dans l'athérosclérose Medecine/Sciences, 2001, 17, 637.	0.2	0
790	PPARα, Lipoprotein Metabolism, Metabolic Diseases, and Atherosclerosis. Medical Science Symposia Series, 2002, , 63-79.	0.0	0
791	Residual Risk Reduction Initiative: výzva ke snÞenÃ-reziduÃ;lnÃho vaskulÃ;rnÃho rizika u pacientÅ⁻ s dyslipidemiÃ . Cor Et Vasa, 2010, 52, 212-228.	0.1	0
792	Les facteurs régulateurs du gène ob. Medecine/Sciences, 1996, 12, 383.	0.2	0

#	Article	IF	CITATIONS
793	Transcription, différenciation adipocytaire et obésité. Medecine/Sciences, 1996, 12, 885.	0.2	Ο
794	RÃ1e des cofacteurs transcriptionnels dans la transduction des signaux hormonaux par les récepteurs nucléaires Medecine/Sciences, 1997, 13, 961.	0.2	0
795	Mechanisms of the Hypolipidemic Action of Fibrates. Medical Science Symposia Series, 1998, , 9-17.	0.0	Ο
796	La mutation staggerer du récepteur nucléaire RORα, ou comment un phénotype peut en cacher un autre Medecine/Sciences, 1999, 15, 1305.	0.2	0
797	Von Willebrand Factor As a Biological Sensor of Blood Flow in Percutaneous Cardiac Procedures. Blood, 2014, 124, 474-474.	1.4	0
798	Rev-erb-α : une cible thérapeutique contre la perte de masse musculaire ?. Les Cahiers De Myologie, 2018, , 43-44.	0.0	0
799	The conundrum of the functional relationship between transcription factors and chromatin. Epigenomics, 2022, , .	2.1	0