
Yueshen Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4207584/publications.pdf Version: 2024-02-01

ΥΠΕΣΗΕΝ Μ/Π

#	Article	IF	CITATIONS
1	Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature, 2019, 575, 639-642.	27.8	658
2	Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nature Communications, 2018, 9, 415.	12.8	527
3	Electrochemical CO ₂ Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution. Journal of the American Chemical Society, 2016, 138, 8076-8079.	13.7	450
4	Introducing Fe ²⁺ into Nickel–Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie - International Edition, 2018, 57, 9392-9396.	13.8	284
5	Spatially separating redox centers on 2D carbon nitride with cobalt single atom for photocatalytic H ₂ O ₂ production. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6376-6382.	7.1	245
6	Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nature Sustainability, 2021, 4, 725-730.	23.7	176
7	Electroreduction of CO ₂ Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center. ACS Central Science, 2017, 3, 847-852.	11.3	165
8	Selfâ€Cleaning Catalyst Electrodes for Stabilized CO ₂ Reduction to Hydrocarbons. Angewandte Chemie - International Edition, 2017, 56, 13135-13139.	13.8	126
9	CO2 doping of organic interlayers for perovskite solar cells. Nature, 2021, 594, 51-56.	27.8	120
10	Heterogeneous Molecular Catalysts of Metal Phthalocyanines for Electrochemical CO ₂ Reduction Reactions. Accounts of Chemical Research, 2021, 54, 3149-3159.	15.6	102
11	High-Performance Electrochemical CO ₂ Reduction Cells Based on Non-noble Metal Catalysts. ACS Energy Letters, 2018, 3, 2527-2532.	17.4	90
12	Introducing Fe ²⁺ into Nickel–Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie, 2018, 130, 9536-9540.	2.0	86
13	Coupled Metal/Oxide Catalysts with Tunable Product Selectivity for Electrocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2017, 9, 28519-28526.	8.0	83
14	Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Research, 2019, 12, 345-349.	10.4	80
15	Unlocking Bifunctional Electrocatalytic Activity for CO ₂ Reduction Reaction by Win-Win Metal–Oxide Cooperation. ACS Energy Letters, 2018, 3, 2816-2822.	17.4	76
16	Activating Copper for Electrocatalytic CO ₂ Reduction to Formate via Molecular Interactions. ACS Catalysis, 2020, 10, 9271-9275.	11.2	75
17	An Integrated CO ₂ Electrolyzer and Formate Fuel Cell Enabled by a Reversibly Restructuring Pb–Pd Bimetallic Catalyst. Angewandte Chemie - International Edition, 2019, 58, 4031-4035.	13.8	64
18	A bio-inspired O2-tolerant catalytic CO2 reduction electrode. Science Bulletin, 2019, 64, 1890-1895.	9.0	61

Yueshen Wu

#	Article	IF	CITATIONS
19	Copper–Gold Interactions Enhancing Formate Production from Electrochemical CO ₂ Reduction. ACS Catalysis, 2019, 9, 10894-10898.	11.2	58
20	Cascade electrocatalytic reduction of carbon dioxide and nitrate to ethylamine. Journal of Energy Chemistry, 2022, 65, 367-370.	12.9	52
21	Electrochemical Reductive N-Methylation with CO ₂ Enabled by a Molecular Catalyst. Journal of the American Chemical Society, 2021, 143, 19983-19991.	13.7	50
22	Electrode-Ligand Interactions Dramatically Enhance CO ₂ Conversion to CO by the [Ni(cyclam)](PF ₆) ₂ Catalyst. ACS Catalysis, 2017, 7, 5282-5288.	11.2	43
23	Acid–Base Interaction Enhancing Oxygen Tolerance in Electrocatalytic Carbon Dioxide Reduction. Angewandte Chemie - International Edition, 2020, 59, 10918-10923.	13.8	40
24	Selfâ€Cleaning Catalyst Electrodes for Stabilized CO ₂ Reduction to Hydrocarbons. Angewandte Chemie, 2017, 129, 13315-13319.	2.0	38
25	Heterogeneous Nature of Electrocatalytic CO/CO ₂ Reduction by Cobalt Phthalocyanines. ChemSusChem, 2020, 13, 6296-6299.	6.8	37
26	Unusual Stability of a Bacteriochlorin Electrocatalyst under Reductive Conditions. A Case Study on CO ₂ Conversion to CO. ACS Catalysis, 2018, 8, 10131-10136.	11.2	28
27	Interface Engineering of Silver-Based Heterostructures for CO ₂ Reduction Reaction. ACS Applied Materials & amp; Interfaces, 2020, 12, 56642-56649.	8.0	27
28	Breaking Scaling Relationships in CO ₂ Reduction on Copper Alloys with Organic Additives. ACS Central Science, 2021, 7, 1756-1762.	11.3	26
29	An advanced zinc air battery with nanostructured superwetting electrodes. Energy Storage Materials, 2019, 17, 358-365.	18.0	25
30	Bifunctional electrocatalysis for CO ₂ reduction <i>via</i> surface capping-dependent metal–oxide interactions. Chemical Communications, 2019, 55, 8864-8867.	4.1	17
31	Enhanced Electrocatalytic Activity of a Zinc Porphyrin for CO ₂ Reduction: Cooperative Effects of Triazole Units in the Second Coordination Sphere. Chemistry - A European Journal, 2020, 26, 16774-16781.	3.3	16
32	Monolayer Molecular Functionalization Enabled by Acid–Base Interaction for High-Performance Photochemical CO ₂ Reduction. ACS Energy Letters, 2022, 7, 2265-2272.	17.4	15
33	An Integrated CO 2 Electrolyzer and Formate Fuel Cell Enabled by a Reversibly Restructuring Pb–Pd Bimetallic Catalyst. Angewandte Chemie, 2019, 131, 4071-4075.	2.0	11
34	Surprisingly big linker-dependence of activity and selectivity in CO ₂ reduction by an iridium(<scp>i</scp>) pincer complex. Chemical Communications, 2020, 56, 9126-9129.	4.1	10
35	Acid–Base Interaction Enhancing Oxygen Tolerance in Electrocatalytic Carbon Dioxide Reduction. Angewandte Chemie, 2020, 132, 11010-11015.	2.0	6
36	Restructuring and integrity of molecular catalysts in electrochemical CO ₂ reduction. Natural Sciences, 2022, 2, .	2.1	5

#	Article	IF	CITATIONS
37	Mechanistic study of CO/CO 2 conversion catalyzed by a biomimetic Ni(II)â€iminothiolate complex. International Journal of Quantum Chemistry, 2018, 118, e25555.	2.0	2