
Yao-Bing Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4207488/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chemistry, 2013, 15, 1095.	4.6	584
2	Surface Facet of Palladium Nanocrystals: A Key Parameter to the Activation of Molecular Oxygen for Organic Catalysis and Cancer Treatment. Journal of the American Chemical Society, 2013, 135, 3200-3207.	6.6	321
3	RANEY® Ni catalyzed transfer hydrogenation of levulinate esters to γ-valerolactone at room temperature. Chemical Communications, 2013, 49, 5328.	2.2	188
4	Roomâ€Temperature Copperâ€Catalyzed Carbon–Nitrogen Coupling of Aryl Iodides and Bromides Promoted by Organic Ionic Bases. Angewandte Chemie - International Edition, 2009, 48, 7398-7401.	7.2	165
5	Nickel–Tungsten Carbide Catalysts for the Production of 2,5â€Dimethylfuran from Biomassâ€Derived Molecules. ChemSusChem, 2014, 7, 1068-1072.	3.6	164
6	Catalytic Transfer Hydrogenation of Furfural to 2â€Methylfuran and 2â€Methyltetrahydrofuran over Bimetallic Copper–Palladium Catalysts. ChemSusChem, 2016, 9, 3330-3337.	3.6	128
7	Enhanced Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone over a Robust Cu–Ni Bimetallic Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 1322-1331.	3.2	115
8	Selective hydrogenolysis of phenols and phenyl ethers to arenes through direct C–O cleavage over ruthenium–tungsten bifunctional catalysts. Green Chemistry, 2015, 17, 3010-3017.	4.6	112
9	Hydrodeoxygenation of lignin-derived phenols into alkanes over carbon nanotube supported Ru catalysts in biphasic systems. Green Chemistry, 2015, 17, 1710-1717.	4.6	107
10	Rutheniumâ \in Catalyzed Conversion of Levulinic Acid to Pyrrolidines by Reductive Amination. ChemSusChem, 2011, 4, 1578-1581.	3.6	102
11	Microwave-assisted alcoholysis of furfural alcohol into alkyl levulinates catalyzed by metal salts. Green Chemistry, 2016, 18, 1516-1523.	4.6	83
12	Facile and high-yield synthesis of methyl levulinate from cellulose. Green Chemistry, 2018, 20, 1323-1334.	4.6	81
13	Cu-Catalyzed Carbon-Heteroatom Coupling Reactions under Mild Conditions Promoted by Resin-Bound Organic Ionic Bases. Journal of Organic Chemistry, 2011, 76, 800-810.	1.7	73
14	Insight into Aluminum Sulfateâ€Catalyzed Xylan Conversion into Furfural in a γâ€Valerolactone/Water Biphasic Solvent under Microwave Conditions. ChemSusChem, 2017, 10, 4066-4079.	3.6	72
15	Production of high quality fuels from lignocellulose-derived chemicals: a convenient C–C bond formation of furfural, 5-methylfurfural and aromatic aldehyde. RSC Advances, 2012, 2, 11211.	1.7	68
16	Heterogeneous Palladium Catalysts for Decarbonylation of Biomassâ€Đerived Molecules under Mild Conditions. ChemSusChem, 2013, 6, 1348-1351.	3.6	66
17	Electrochemical Synthesis of Adiponitrile from the Renewable Raw Material Glutamic Acid. ChemSusChem, 2012, 5, 617-620.	3.6	56
18	Lithium tert-butoxide mediated α-alkylation of ketones with primary alcohols under transition-metal-free conditions. RSC Advances, 2013, 3, 7739.	1.7	52

YAO-BING HUANG

#	Article	IF	CITATIONS
19	Room-Temperature Dissolution and Mechanistic Investigation of Cellulose in a Tetra-Butylammonium Acetate/Dimethyl Sulfoxide System. ACS Sustainable Chemistry and Engineering, 2016, 4, 2286-2294.	3.2	50
20	Highly efficient metal salt catalyst for the esterification of biomass derived levulinic acid under microwave irradiation. RSC Advances, 2016, 6, 2106-2111.	1.7	46
21	Isonitrile Formation by a Nonâ€Heme Iron(II)â€Dependent Oxidase/Decarboxylase. Angewandte Chemie - International Edition, 2018, 57, 9707-9710.	7.2	36
22	Structures and pyrolytic characteristics of organosolv lignins from typical softwood, hardwood and herbaceous biomass. Industrial Crops and Products, 2021, 171, 113912.	2.5	35
23	Mechanistic Insights into the Solvent-Driven Adsorptive Hydrodeoxygenation of Biomass Derived Levulinate Acid/Ester to 2-Methyltetrahydrofuran over Bimetallic Cu–Ni Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 11477-11490.	3.2	33
24	A New Lewis Acidic Zr Catalyst for the Synthesis of Furanic Diesel Precursor from Biomass Derived Furfural and 2-Methylfuran. Catalysis Letters, 2019, 149, 292-302.	1.4	27
25	Influence of alkenyl structures on the epoxidation of unsaturated fatty acid methyl esters and vegetable oils. RSC Advances, 2015, 5, 74783-74789.	1.7	24
26	Highly Efficient Silica-Supported Peroxycarboxylic Acid for the Epoxidation of Unsaturated Fatty Acid Methyl Esters and Vegetable Oils. ACS Sustainable Chemistry and Engineering, 2016, 4, 3840-3849.	3.2	22
27	Modification of Cellulose with Succinic Anhydride in TBAA/DMSO Mixed Solvent under Catalyst-Free Conditions. Materials, 2017, 10, 526.	1.3	21
28	Simple and efficient conversion of cellulose to Î ³ -valerolactone through an integrated alcoholysis/transfer hydrogenation system using Ru and aluminium sulfate catalysts. Catalysis Science and Technology, 2018, 8, 6252-6262.	2.1	21
29	Facile Discovery and Quantification of Isonitrile Natural Products via Tetrazine-Based Click Reactions. Analytical Chemistry, 2020, 92, 599-602.	3.2	21
30	N-Aryl Pyrrole Synthesis from Biomass-Derived Furans and Arylamine over Lewis Acidic Hf-Doped Mesoporous SBA-15 Catalyst. ACS Sustainable Chemistry and Engineering, 2020, 8, 12161-12167.	3.2	21
31	Recent advances in the chemical valorization of cellulose and its derivatives into ester compounds. Green Chemistry, 2022, 24, 3895-3921.	4.6	15
32	Hafnium-Doped Mesoporous Silica as Efficient Lewis Acidic Catalyst for Friedel–Crafts Alkylation Reactions. Nanomaterials, 2019, 9, 1128.	1.9	14
33	Solving the Water Hypersensitive Challenge of Sulfated Solid Superacid in Acid-Catalyzed Reactions. ACS Applied Materials & Interfaces, 2019, 11, 9919-9924.	4.0	13
34	Highly Efficient and Recyclable Metal Salt Catalyst for the Production of Biodiesel: Toward Greener Process. ChemistrySelect, 2017, 2, 3775-3782.	0.7	11
35	In-situ fabrication of Ag nanoparticles on biomass derived biochar as highly active catalyst for the halogenation of terminal alkynes at room temperature. Applied Surface Science, 2021, 560, 150039.	3.1	10
36	Enhanced Transfer Hydrogenation Activity of Zrâ€Doped Mesoporous Silica through Solâ€Gel Method for the Reduction of Biomassâ€Derived Unsaturated Carbonâ€Oxygen Bonds. ChemistrySelect, 2018, 3, 11071-11080.	0.7	8

YAO-BING HUANG

#	Article	IF	CITATIONS
37	Production of Acetic Acid from Lignocellulosic Biomass in the Presence of Mineral Acid and Oxygen under Hydrothermal Condition. Acta Chimica Sinica, 2014, 72, 1223.	0.5	8
38	lsonitrile Formation by a Nonâ€Heme Iron(II)â€Dependent Oxidase/Decarboxylase. Angewandte Chemie, 2018, 130, 9855-9858.	1.6	6
39	Microwave-Assisted Alcoholysis of Cellulose to Methyl Levulinate Catalyzed by SnCl4/H2SO4. Chinese Journal of Organic Chemistry, 2016, 36, 1438.	0.6	5
40	Supported Pd Catalysts for the C—O Cleavage of the Lignin Derived Model Dimers through Intramolecular Hydrogenolysis Reaction. Acta Chimica Sinica, 2014, 72, 1005.	0.5	4
41	Catalytic Transfer Hydrogenation of 5â€Hydroxymethylfurfural with Primary Alcohols over Skeletal CuZnAl Catalysts. ChemSusChem, 2022, 15, .	3.6	4