Mark R Servos

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4207374/mark-r-servos-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

172 9,637 46 94 g-index

183 10,613 5.6 6.09 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
172	Temperature modulates the impacts of wastewater exposure on the physiology and behaviour of fathead minnow <i>Chemosphere</i> , 2022 , 133738	8.4	
171	Impacts on antioxidative enzymes and transcripts in darter (Etheostoma spp.) brains in the Grand River exposed to wastewater effluent. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2022 , 258, 109381	3.2	O
170	Endocrine Disruptor Impacts on Fish From Chile: The Influence of Wastewaters. <i>Frontiers in Endocrinology</i> , 2021 , 12, 611281	5.7	6
169	Effect of Background Water Matrices on Pharmaceutical and Personal Care Product Removal by UV-LED/TiO2. <i>Catalysts</i> , 2021 , 11, 576	4	2
168	A 30-Year Study of Impacts, Recovery, and Development of Critical Effect Sizes for Endocrine Disruption in White Sucker () Exposed to Bleached-Kraft Pulp Mill Effluent at Jackfish Bay, Ontario, Canada. <i>Frontiers in Endocrinology</i> , 2021 , 12, 664157	5.7	3
167	Catching a resurgence: Increase in SARS-CoV-2 viral RNA identified in wastewater 48 h before COVID-19 clinical tests and 96 h before hospitalizations. <i>Science of the Total Environment</i> , 2021 , 770, 145319	10.2	59
166	Municipal wastewater as an ecological trap: Effects on fish communities across seasons. <i>Science of the Total Environment</i> , 2021 , 759, 143430	10.2	13
165	Photodecomposition of pharmaceuticals and personal care products using P25 modified with Ag nanoparticles in the presence of natural organic matter. <i>Science of the Total Environment</i> , 2021 , 752, 142000	10.2	11
164	Quantitative analysis of SARS-CoV-2 RNA from wastewater solids in communities with low COVID-19 incidence and prevalence. <i>Water Research</i> , 2021 , 188, 116560	12.5	136
163	Degradation of natural organic matter using Ag-P25 photocatalyst under continuous and periodic irradiation of 405 and 365 nm UV-LEDs. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 9, 104844	6.8	7
162	Rainbow darter (Etheostoma caeruleum) from a river impacted by municipal wastewater effluents have altered gut content microbiomes. <i>Science of the Total Environment</i> , 2021 , 751, 141724	10.2	7
161	Synergistic Multimodal Cancer Therapy Using Glucose Oxidase@CuS Nanocomposites. <i>ACS Applied Materials & ACS Applied & ACS Applied Materials & ACS Applied & ACS App</i>	9.5	6
160	Evaluating the Sampling Design of a Long-Term Community-Based Estuary Monitoring Program. <i>Fishes</i> , 2021 , 6, 27	2.5	O
159	Exposure to wastewater effluent disrupts hypoxia responses in killifish (Fundulus heteroclitus). <i>Environmental Pollution</i> , 2021 , 284, 117373	9.3	2
158	Comparison of approaches to quantify SARS-CoV-2 in wastewater using RT-qPCR: Results and implications from a collaborative inter-laboratory study in Canada. <i>Journal of Environmental Sciences</i> , 2021 , 107, 218-229	6.4	44
157	Near real-time determination of B.1.1.7 in proportion to total SARS-CoV-2 viral load in wastewater using an allele-specific primer extension PCR strategy. <i>Water Research</i> , 2021 , 205, 117681	12.5	15
156	Impacts on Metabolism and Gill Physiology of Darter Species (Etheostoma spp.) That Are Attributed to Wastewater Effluent in the Grand River. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 8364	2.6	2

(2018-2020)

155	Development of a thin-film solid-phase microextraction (TF-SPME) method coupled to liquid chromatography and tandem mass spectrometry for high-throughput determination of steroid hormones in white sucker fish plasma. <i>Analytical and Bioanalytical Chemistry</i> , 2020 , 412, 4183-4194	4.4	5	
154	Metabolic profile of fish muscle tissue changes with sampling method, storage strategy and time. <i>Analytica Chimica Acta</i> , 2020 , 1136, 42-50	6.6	3	
153	Improved biodegradation of pharmaceuticals after mild photocatalytic pretreatment. <i>Water and Environment Journal</i> , 2020 , 34, 704-714	1.7	1	
152	A simple and cost-effective approach to fabricate tunable length polymeric microneedle patches for controllable transdermal drug delivery <i>RSC Advances</i> , 2020 , 10, 15541-15546	3.7	10	
151	High Throughput Sequencing of MicroRNA in Rainbow Trout Plasma, Mucus, and Surrounding Water Following Acute Stress. <i>Frontiers in Physiology</i> , 2020 , 11, 588313	4.6	9	
150	Photocatalytic degradation using TiO2-graphene nanocomposite under UV-LED illumination: Optimization using response surface methodology. <i>Journal of Environmental Chemical Engineering</i> , 2019 , 7, 103366	6.8	12	
149	In vivo solid-phase microextraction sampling combined with metabolomics and toxicological studies for the non-lethal monitoring of the exposome in fish tissue. <i>Environmental Pollution</i> , 2019 , 249, 109-115	9.3	26	
148	Gold nanoparticles as dehydrogenase mimicking nanozymes for estradiol degradation. <i>Chinese Chemical Letters</i> , 2019 , 30, 1655-1658	8.1	24	
147	Photocatalytic Degradation of Microcystins by TiO2 Using UV-LED Controlled Periodic Illumination. <i>Catalysts</i> , 2019 , 9, 181	4	17	
146	Multiple Stressors in the Environment: The Effects of Exposure to an Antidepressant (Venlafaxine) and Increased Temperature on Zebrafish Metabolism. <i>Frontiers in Physiology</i> , 2019 , 10, 1431	4.6	15	
145	Regenerative NanoOctopus Based on Multivalent-Aptamer-Functionalized Magnetic Microparticles for Effective Cell Capture in Whole Blood. <i>Analytical Chemistry</i> , 2019 , 91, 4017-4022	7.8	31	
144	Use of prospective and retrospective risk assessment methods that simplify chemical mixtures associated with treated domestic wastewater discharges. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 690-702	3.8	20	
143	Multi-year prediction of estrogenicity in municipal wastewater effluents. <i>Science of the Total Environment</i> , 2018 , 610-611, 1103-1112	10.2	16	
142	Modeling the exposure of wild fish to endocrine active chemicals: Potential linkages of total estrogenicity to field-observed intersex. <i>Water Research</i> , 2018 , 139, 187-197	12.5	22	
141	Metabolome Profiling of Fish Muscle Tissue Exposed to Benzo[a]pyrene Using in Vivo Solid-Phase Microextraction. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 431-435	11	29	
140	Tissue storage affects lipidome profiling in comparison to in vivo microsampling approach. <i>Scientific Reports</i> , 2018 , 8, 6980	4.9	24	
139	Impacts of wastewater treatment plant effluent on energetics and stress response of rainbow darter (Etheostoma caeruleum) in the Grand River watershed. <i>Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology</i> , 2018 , 224, 270-279	2.3	23	
138	Assessing recovery of in vitro steroid production in male rainbow darter (Etheostoma caeruleum) in response to municipal wastewater treatment plant infrastructure changes. <i>Environmental Toxicology and Chemistry</i> , 2018 , 37, 501-514	3.8	1	

137	Concurrent photocatalytic degradation of organic contaminants and photocathodic protection of steel AglīiO2 composites. <i>Materialia</i> , 2018 , 3, 212-217	3.2	1
136	Returning to normal? Assessing transcriptome recovery over time in male rainbow darter (Etheostoma caeruleum) liver in response to wastewater-treatment plant upgrades. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 2108-2122	3.8	13
135	How Does Reference Site Selection Influence Interpretation of Omics Data?: Evaluating Liver Transcriptome Responses in Male Rainbow Darter (Etheostoma caeruleum) across an Urban Environment. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	11
134	Municipal wastewater treatment plant effluent-induced effects on freshwater mussel populations and the role of mussel refugia in recolonizing an extirpated reach. <i>Environmental Pollution</i> , 2017 , 225, 460-468	9.3	9
133	In vivo microsampling to capture the elusive exposome. <i>Scientific Reports</i> , 2017 , 7, 44038	4.9	25
132	Reduction of Intersex in a Wild Fish Population in Response to Major Municipal Wastewater Treatment Plant Upgrades. <i>Environmental Science & Environmental Science & Environme</i>	10.3	38
131	Freshwater mussels in an urban watershed: Impacts of anthropogenic inputs and habitat alterations on populations. <i>Science of the Total Environment</i> , 2017 , 574, 671-679	10.2	21
130	Rainbow trout exposed to benzo[a]pyrene yields conserved microRNA binding sites in DNA methyltransferases across 500 million years of evolution. <i>Scientific Reports</i> , 2017 , 7, 16843	4.9	11
129	Photocatalytic degradation using one-dimensional TiO2 and Ag-TiO2 nanobelts under UV-LED controlled periodic illumination. <i>Journal of Environmental Chemical Engineering</i> , 2017 , 5, 4365-4373	6.8	8
128	Influence of methanol when used as a water-miscible carrier of pharmaceuticals in TiO 2 photocatalytic degradation experiments. <i>Journal of Environmental Chemical Engineering</i> , 2017 , 5, 4497-4	4504	11
127	If 5N tracks changes in the assimilation of sewage-derived nutrients into a riverine food web before and after major process alterations at two municipal wastewater treatment plants. <i>Ecological Indicators</i> , 2017 , 72, 747-758	5.8	25
126	Impacts of a tertiary treated municipal wastewater effluent on the carbon and nitrogen stable isotope signatures of two darter species (Etheostoma blennioides and E. caeruleum) in a small receiving environment. <i>Ecological Indicators</i> , 2016 , 60, 594-602	5.8	9
125	Photocatalytic decomposition of selected estrogens and their estrogenic activity by UV-LED irradiated TiO2 immobilized on porous titanium sheets via thermal-chemical oxidation. <i>Journal of Hazardous Materials</i> , 2016 , 318, 541-550	12.8	34
124	Assessing the bioremediation potential of algal species indigenous to oil sands process-affected waters on mixtures of oil sands acid extractable organics. <i>Ecotoxicology and Environmental Safety</i> , 2016 , 133, 373-80	7	6
123	Occurrence, distribution, and sources of antimicrobials in a mixed-use watershed. <i>Science of the Total Environment</i> , 2016 , 541, 1581-1591	10.2	20
122	An Assessment of the Spatial and Temporal Variability of Biological Responses to Municipal Wastewater Effluent in Rainbow Darter (Etheostoma caeruleum) Collected along an Urban Gradient. <i>PLoS ONE</i> , 2016 , 11, e0164879	3.7	22
121	Characterizing Transcriptional Networks in Male Rainbow Darter (Etheostoma caeruleum) that Regulate Testis Development over a Complete Reproductive Cycle. <i>PLoS ONE</i> , 2016 , 11, e0164722	3.7	7
120	Biological responses to contaminants in darters (Etheostoma spp.) collected from rural and urban regions of the Grand River, ON, Canada. <i>Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology</i> , 2016 , 199, 126-135	2.3	14

119	Photocatalytic decomposition of organic micropollutants using immobilized TiO2 having different isoelectric points. <i>Water Research</i> , 2016 , 101, 351-361	12.5	50
118	Distribution, Partitioning and Bioaccumulation of Substituted Diphenylamine Antioxidants and Benzotriazole UV Stabilizers in an Urban Creek in Canada. <i>Environmental Science & Environmental Science </i>	10.3	58
117	Persistent organic pollutants and porphyrins biomarkers in penguin faeces from Kopaitic Island and Antarctic Peninsula. <i>Science of the Total Environment</i> , 2016 , 573, 1390-1396	10.2	14
116	Inhibition of Multidrug Resistance of Cancer Cells by Co-Delivery of DNA Nanostructures and Drugs Using Porous Silicon Nanoparticles@Giant Liposomes. <i>Advanced Functional Materials</i> , 2015 , 25, 3330-33	4 5 .6	97
115	Adsorption of doxorubicin on citrate-capped gold nanoparticles: insights into engineering potent chemotherapeutic delivery systems. <i>Nanoscale</i> , 2015 , 7, 19611-9	7.7	49
114	Historical decline and altered congener patterns of polychlorinated dibenzo-p-dioxins and dibenzofurans in fish and sediment in response to process changes at a pulp mill discharging into Jackfish Bay, Lake Superior. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 2489-502	3.8	7
113	Prevention of doxorubicin sorptive losses in drug delivery studies using polyethylene glycol. <i>RSC Advances</i> , 2015 , 5, 25693-25698	3.7	6
112	Assessment of biomarkers for contaminants of emerging concern on aquatic organisms downstream of a municipal wastewater discharge. <i>Science of the Total Environment</i> , 2015 , 530-531, 140-	-19 3	68
111	Bisphenol A accumulation in eggs disrupts the endocrine regulation of growth in rainbow trout larvae. <i>Aquatic Toxicology</i> , 2015 , 161, 51-60	5.1	35
110	Severe intersex is predictive of poor fertilization success in populations of rainbow darter (Etheostoma caeruleum). <i>Aquatic Toxicology</i> , 2015 , 160, 106-16	5.1	45
109	Adsorption of DNA oligonucleotides by titanium dioxide nanoparticles. <i>Langmuir</i> , 2014 , 30, 839-45	4	80
108	Regional Cumulative Effects Monitoring Framework: Gaps and Challenges for the Biob® River Basin in South Central Chile. <i>Gayana</i> , 2014 , 78, 109-119	1.7	12
107	Differential recovery of 🛮 3C in multiple tissues of white sucker across age classes after the closure of a pulp mill. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2014 , 71, 747-755	2.4	3
106	Silica-Coating of Hematite Nanoparticles Using Reactive Water-Soluble Polyalkoxysiloxanes. <i>Particle and Particle Systems Characterization</i> , 2014 , 31, 365-373	3.1	10
105	An inter-laboratory study on the variability in measured concentrations of 17Eestradiol, testosterone, and 11-ketotestosterone in white sucker: implications and recommendations. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 847-57	3.8	17
104	Optimization of effects-assessment of greenside darter (Etheostoma blennioides) exposed to tertiary treated municipal wastewater based on seasonal changes of reproductive endpoints. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1077-89	3.8	9
103	Molecular signatures in rainbow darter (Etheostoma caeruleum) inhabiting an urbanized river reach receiving wastewater effluents. <i>Aquatic Toxicology</i> , 2014 , 148, 211-20	5.1	39
102	Toward Fast and Quantitative Modification of Large Gold Nanoparticles by Thiolated DNA: Scaling of Nanoscale Forces, Kinetics, and the Need for Thiol Reduction. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 15677-15684	3.8	49

101	Development and evaluation of a new in vivo solid-phase microextraction sampler. <i>Journal of Separation Science</i> , 2013 , 36, 219-23	3.4	27
100	Science and management of transboundary lakes: Lessons learned from the global environment facility program. <i>Environmental Development</i> , 2013 , 7, 17-31	4.1	11
99	Enhanced photocatalytic degradation of dyes by TiO2 nanobelts with hierarchical structures. Journal of Photochemistry and Photobiology A: Chemistry, 2013 , 256, 7-15	4.7	69
98	Seasonal mercury concentrations and \$15N and \$13C values of benthic macroinvertebrates and sediments from a historically polluted estuary in south central Chile. <i>Science of the Total Environment</i> , 2013 , 442, 198-206	10.2	14
97	Effects of 17\textracteristics that the status in the stat	5.1	19
96	Polarity control for nonthiolated DNA adsorption onto gold nanoparticles. <i>Langmuir</i> , 2013 , 29, 6091-8	4	67
95	Fish community responses to multiple municipal wastewater inputs in a watershed. <i>Integrated Environmental Assessment and Management</i> , 2013 , 9, 456-68	2.5	34
94	Detection of reproductive impacts of effluents from pulp and paper mills: Shifts in issues and potential causes. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 729-31	3.8	8
93	Occurrence and degree of intersex (testis-ova) in darters (Etheostoma SPP.) across an urban gradient in the Grand River, Ontario, Canada. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 1981-9	1 ^{3.8}	49
92	A framework for assessing cumulative effects in watersheds: an introduction to Canadian case studies. <i>Integrated Environmental Assessment and Management</i> , 2013 , 9, 363-9	2.5	40
91	In vivo sampling of environmental organic contaminants in fish by solid-phase microextraction. <i>TrAC - Trends in Analytical Chemistry</i> , 2012 , 32, 31-39	14.6	41
90	Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. <i>Journal of the American Chemical Society</i> , 2012 , 134, 7266-9	16.4	376
89	Fast pH-assisted functionalization of silver nanoparticles with monothiolated DNA. <i>Chemical Communications</i> , 2012 , 48, 10114-6	5.8	71
88	Instantaneous attachment of an ultrahigh density of nonthiolated DNA to gold nanoparticles and its applications. <i>Langmuir</i> , 2012 , 28, 17053-60	4	131
87	Determination of pharmaceutical residues in fish bile by solid-phase microextraction couple with liquid chromatography-tandem mass spectrometry (LC/MS/MS). <i>Environmental Science & Environmental Science & Technology</i> , 2012 , 46, 5302-9	10.3	68
86	Evaluating the potential of effluents and wood feedstocks from pulp and paper mills in Brazil, Canada, and New Zealand to affect fish reproduction: chemical profiling and in vitro assessments. <i>Environmental Science & Description (Canada)</i> 2012, 46, 1849-58	10.3	24
85	Effects of polyethylene glycol on DNA adsorption and hybridization on gold nanoparticles and graphene oxide. <i>Langmuir</i> , 2012 , 28, 14330-7	4	40
84	Study of kinetic desorption rate constant in fish muscle and agarose gel model using solid phase microextraction coupled with liquid chromatography with tandem mass spectrometry. <i>Analytica Chimica Acta</i> , 2012 , 742, 2-9	6.6	11

(2011-2012)

Tissue-specific metabolic changes in response to an acute handling disturbance in juvenile rainbow trout exposed to municipal wastewater effluent. <i>Aquatic Toxicology</i> , 2012 , 108, 53-9	5.1	27
Reproductive and histopathological effects in wild fish inhabiting an effluent-dominated stream, Wascana Creek, SK, Canada. <i>Aquatic Toxicology</i> , 2012 , 110-111, 149-61	5.1	39
PCR-ready human DNA extraction from urine samples using magnetic nanoparticles. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2012 , 881-882, 63-8	3.2	35
Temporal changes in stress and tissue-specific metabolic responses to municipal wastewater effluent exposure in rainbow trout. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2012 , 156, 67-74	3.2	17
Determination of selected pharmaceutical residues in wastewater using an automated open bed solid phase microextraction system. <i>Journal of Chromatography A</i> , 2012 , 1262, 34-42	4.5	30
Optimization of solid phase microextraction for non-lethal in vivo determination of selected pharmaceuticals in fish muscle using liquid chromatography-mass spectrometry. <i>Journal of Chromatography A</i> , 2012 , 1261, 99-106	4.5	69
Surface science of DNA adsorption onto citrate-capped gold nanoparticles. <i>Langmuir</i> , 2012 , 28, 3896-9	024	228
Ultrahigh nanoparticle stability against salt, pH, and solvent with retained surface accessibility via depletion stabilization. <i>Journal of the American Chemical Society</i> , 2012 , 134, 9910-3	16.4	159
Depth-profiling of environmental pharmaceuticals in biological tissue by solid-phase microextraction. <i>Analytical Chemistry</i> , 2012 , 84, 6956-62	7.8	16
Pharmaceuticals and personal care products in the environment: what are the big questions?. <i>Environmental Health Perspectives</i> , 2012 , 120, 1221-9	8.4	830
Sampling-rate calibration for rapid and nonlethal monitoring of organic contaminants in fish muscle by solid-phase microextraction. <i>Environmental Science & Environmental & E</i>	10.3	85
Fathead minnow (Pimephales promelas) reproduction is impaired in aged oil sands process-affected waters. <i>Aquatic Toxicology</i> , 2011 , 101, 214-20	5.1	83
Exposure to municipal wastewater effluent impacts stress performance in rainbow trout. <i>Aquatic Toxicology</i> , 2011 , 103, 85-91	5.1	39
Intersex and reproductive impairment of wild fish exposed to multiple municipal wastewater discharges. <i>Aquatic Toxicology</i> , 2011 , 104, 278-90	5.1	162
Solid-phase microextraction coupled to LC-ESI-MS/MS: evaluation and correction for matrix-induced ionization suppression/enhancement for pharmaceutical analysis in biological and environmental samples. <i>Analytical Chemistry</i> , 2011 , 83, 6532-8	7.8	30
Environmental characterization of surface runoff from three highway sites in Southern Ontario, Canada: 2. Toxicology. <i>Water Quality Research Journal of Canada</i> , 2011 , 46, 121-136	1.7	16
The effects of tertiary treated municipal wastewater on fish communities of a small river tributary in Southern Ontario, Canada. <i>Environmental Pollution</i> , 2011 , 159, 1923-31	9.3	30
Validation and use of in vivo solid phase micro-extraction (SPME) for the detection of emerging contaminants in fish. <i>Chemosphere</i> , 2011 , 85, 1472-80	8.4	54
	Reproductive and histopathological effects in wild fish inhabiting an effluent-dominated stream, Wascana Creek, SK, Canada. <i>Aquatic Toxicology</i> , 2012, 110-111, 149-61 PCR-ready human DNA extraction from urine samples using magnetic nanoparticles. <i>Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences</i> , 2012, 881-882, 63-8 Temporal changes in stress and tissue-specific metabolic responses to municipal wastewater effluent exposure in rainbow trout. <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2012, 156, 67-74 Determination of selected pharmaceutical residues in wastewater using an automated open bed solid phase microextraction system. <i>Journal of Chromatography A</i> , 2012, 1262, 34-42 Optimization of solid ohase microextraction for non-lethal in vivo determination of selected pharmaceuticals in fish muscle using liquid chromatography-mass spectrometry. <i>Journal of Chromatography A</i> , 2012, 1261, 99-106 Surface science of DNA adsorption onto citrate-capped gold nanoparticles. <i>Langmuir</i> , 2012, 28, 3896-9 Ultrahigh nanoparticle stability against salt, pH, and solvent with retained surface accessibility via depletion stabilization. <i>Journal of the American Chemical Society</i> , 2012, 134, 9910-3 Depth-profiling of environmental pharmaceuticals in biological tissue by solid-phase microextraction. <i>Analytical Chemistry</i> , 2012, 84, 6956-62 Pharmaceuticals and personal care products in the environment: what are the big questions?. <i>Environmental Health Perspectives</i> , 2012, 120, 1221-9 Sampling-rate calibration for rapid and nonlethal monitoring of organic contaminants in fish muscle by solid-phase microextraction. <i>Environmental Science &</i> , Technology, 2011, 45, 7792-8 Fathead minnow (Pimephales promelas) reproduction is impaired in aged oil sands process-affected waters. <i>Aquatic Toxicology</i> , 2011, 101, 214-20 Exposure to municipal wastewater effluent impacts stress performance in rainbow trout. <i>Aquatic Toxicology</i> , 2011, 104, 278-90 Soli	Reproductive and histopathological effects in wild fish inhabiting an effluent-dominated stream, Wascana Creek, SK, Canada. Aquatic Toxicology, 2012, 110-111, 149-61 PCR-ready human DNA extraction from urine samples using magnetic nanoparticles. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 881-882, 63-8 3-2 Temporal changes in stress and tissue-specific metabolic responses to municipal wastewater effluent exposure in rainbow trout. Comparative Biochemistry and Physiology Part - C Toxicology and Pharmacology, 2012, 156, 67-74 Determination of selected pharmaceutical residues in wastewater using an automated open bed solid phase microextraction system. Journal of Chromatography A, 2012, 1262, 34-42 Optimization of solid phase microextraction for non-lethal in vivo determination of selected pharmaceuticals in fish muscle using liquid chromatography-nass spectrometry. Journal of Chromatography A, 2012, 1261, 99-106 Surface science of DNA adsorption onto citrate-capped gold nanoparticles. Langmuir, 2012, 28, 3896-902, depletion stabilization. Journal of the American Chemical Society, 2012, 134, 9910-3 16-4 Depth-profiling of environmental pharmaceuticals in biological tissue by solid-phase microextraction. Analytical Chemistry, 2012, 84, 6956-62 Pharmaceuticals and personal care products in the environment: what are the big questions?. Environmental Health Perspectives, 2012, 120, 1221-9 Sampling-rate calibration for rapid and nonlethal monitoring of organic contaminants in fish muscle by solid-phase microextraction. Environmental Science & Bamp; Technology, 2011, 145, 7792-8 Fabhead minnow (Pimephales promelas) reproduction is impaired in aged oil sands process-affected waters. Aquatic Toxicology, 2011, 101, 214-20 Exposure to municipal wastewater effluent impacts stress performance in rainbow trout. Aquatic Toxicology, 2011, 104, 278-90 Exposure to municipal wastewater effluent impacts stress performance in rainbow trout. Aquatic Toxicology, 2011, 104

65	Hepatic transcriptomics and protein expression in rainbow trout exposed to municipal wastewater effluent. <i>Environmental Science & Environmental Scien</i>	10.3	61
64	Kinetically-calibrated solid-phase microextraction using label-free standards and its application for pharmaceutical analysis. <i>Analytical Chemistry</i> , 2011 , 83, 2371-7	7.8	25
63	Pre-equilibrium solid-phase microextraction of free analyte in complex samples: correction for mass transfer variation from protein binding and matrix tortuosity. <i>Analytical Chemistry</i> , 2011 , 83, 3365	-76	32
62	Temperature-dependent selective purification of plasmid DNA using magnetic nanoparticles in an RNase-free process. <i>Analytical Biochemistry</i> , 2011 , 412, 117-9	3.1	15
61	Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals. <i>Journal of Hazardous Materials</i> , 2011 , 189, 278-85	12.8	137
60	Environmental characterization of surface runoff from three highway sites in Southern Ontario, Canada: 1. Chemistry. <i>Water Quality Research Journal of Canada</i> , 2011 , 46, 110-120	1.7	13
59	Advanced Oxidation Treatment of Drinking Water: Part I. Occurrence and Removal of Pharmaceuticals and Endocrine-Disrupting Compounds from Lake Huron Water. <i>Ozone: Science and Engineering</i> , 2010 , 32, 217-229	2.4	29
58	Tissue-specific in vivo bioconcentration of pharmaceuticals in rainbow trout (Oncorhynchus mykiss) using space-resolved solid-phase microextraction. <i>Environmental Science & amp; Technology</i> , 2010 , 44, 3417-22	10.3	102
57	Temporal resolution of solid-phase microextraction: measurement of real-time concentrations within a dynamic system. <i>Analytical Chemistry</i> , 2010 , 82, 9492-9	7.8	19
56	Biomonitoring of perfluorochemicals and toxicity to the downstream fish community of Etobicoke Creek following deployment of aqueous film-forming foam. <i>Aquatic Toxicology</i> , 2010 , 98, 120-9	5.1	55
55	Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 79-89	3.8	355
54	Environmental risk assessment for the serotonin re-uptake inhibitor fluoxetine: Case study using the European risk assessment framework. <i>Integrated Environmental Assessment and Management</i> , 2010 , 6 Suppl, 524-39	2.5	66
53	Development of the space-resolved solid-phase microextraction technique and its application to biological matrices. <i>Analytical Chemistry</i> , 2009 , 81, 7349-56	7.8	62
52	Use of simultaneous dual-probe microdialysis for the determination of pesticide residues in a jade plant (Crassula ovata). <i>Analyst, The</i> , 2009 , 134, 748-54	5	14
51	Application of solid-phase microextraction for in vivo laboratory and field sampling of pharmaceuticals in fish. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	111
50	The Presence of Selected Pharmaceuticals and the Antimicrobial Triclosan in Drinking Water in Ontario, Canada. <i>Water Quality Research Journal of Canada</i> , 2007 , 42, 130-137	1.7	42
49	Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. <i>Science of the Total Environment</i> , 2006 , 367, 544-58	10.2	390
48	Persistence of endocrine-disrupting chemicals in agricultural soils. <i>Journal of Environmental Engineering and Science</i> , 2006 , 5, 211-219	0.8	13

(1998-2005)

47	In Vivo Estrogenicity of Nonylphenol and Its Ethoxylates in the Canadian Environment. <i>Human and Ecological Risk Assessment (HERA)</i> , 2005 , 11, 353-364	4.9	12
46	Distribution of estrogens, 17beta-estradiol and estrone, in Canadian municipal wastewater treatment plants. <i>Science of the Total Environment</i> , 2005 , 336, 155-70	10.2	314
45	A toxicity identification evaluation approach to studying estrogenic substances in hog manure and agricultural runoff. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 2243-50	3.8	74
44	Occurrence of neutral and acidic drugs in the effluents of Canadian sewage treatment plants. <i>Environmental Toxicology and Chemistry</i> , 2003 , 22, 2872-80	3.8	392
43	An Ecological Risk Assessment of Nonylphenol and Its Ethoxylates in the Aquatic Environment. <i>Human and Ecological Risk Assessment (HERA)</i> , 2003 , 9, 569-587	4.9	32
42	Diet of Mysis relicta in Lake Ontario as revealed by stable isotope and gut content analysis. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2001 , 58, 1975-1986	2.4	87
41	An Overview of Substances Present in Canadian Aquatic Environments Associated with Endocrine Disruption. <i>Water Quality Research Journal of Canada</i> , 2001 , 36, 191-213	1.7	30
40	A Canadian Perspective on Endocrine Disrupting Substances in the Environment. <i>Water Quality Research Journal of Canada</i> , 2001 , 36, 331-346	1.7	2
39	Uncertainties Associated with Assessing the Risk of an Endocrine Active Substance in the Canadian Environment. <i>Water Quality Research Journal of Canada</i> , 2001 , 36, 319-330	1.7	6
38	Review of the Aquatic Toxicity, Estrogenic Responses and Bioaccumulation of Alkylphenols and Alkylphenol Polyethoxylates. <i>Water Quality Research Journal of Canada</i> , 1999 , 34, 123-178	1.7	266
37	An exploratory study of urban runoff toxicity. Water Science and Technology, 1999, 39, 33	2.2	59
36	Behavior and occurrence of estrogens in municipal sewage treatment plantsI. Investigations in Germany, Canada and Brazil. <i>Science of the Total Environment</i> , 1999 , 225, 81-90	10.2	1077
35	The Development of Cumulative Effects Assessment Tools Using Fish Populations 1999,		5
34	Identification of the lampricide 3-trifluoromethyl-4-nitrophenol as an agonist for the rainbow trout estrogen receptor. <i>Environmental Toxicology and Chemistry</i> , 1998 , 17, 425-432	3.8	31
33	Identification of chloro-nitro-trifluoromethyl-substituted dibenzo-p-dioxins in lampricide formulations of 3-trifluoromethyl-4-nitrophenol: Assessment to induce mixed function oxidase activity. <i>Environmental Toxicology and Chemistry</i> , 1998 , 17, 941-950	3.8	6
32	Mammalian and teleost cell line bioassay and chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalent concentrations in lake trout (Salvelinus namaycush) from Lake Superior and Lake Ontario, North America. <i>Environmental Toxicology and Chemistry</i> , 1998	3.8	17
31	Identification of the lampricide 3-trifluoromethyl-4-nitrophenol as an agonist for the rainbow trout estrogen receptor 1998 , 17, 425		1
30	. Environmental Toxicology and Chemistry, 1998 , 17, 941	3.8	3

29	Evaluation of temporal and age-related trends of chemically and biologically generated 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents in lake Ontario lake trout, 1977 to 1993. <i>Environmental Toxicology and Chemistry</i> , 1997 , 16, 154-164	3.8	34
28	. Environmental Toxicology and Chemistry, 1997 , 16, 154	3.8	2
27	Evidence for a Reduction of 2,3,7,8-TCDD Toxic Equivalent Concentrations in White Sucker (Catostomus commersoni) Exposed to Bleached Kraft Pulp Mill Effluent, Following Process and Treatment Improvements. <i>Journal of Great Lakes Research</i> , 1996 , 22, 264-279	3	12
26	Temporal and Age-Related Trends in Levels of Polychlorinated Biphenyl Congeners and Organochlorine Contaminants in Lake Ontario Lake Trout (Salvelinus namaycush). <i>Journal of Great Lakes Research</i> , 1996 , 22, 310-330	3	61
25	Use of an mfo-directed toxicity identification evaluation to isolate and characterize bioactive impurities from a lampricide formulation. <i>Environmental Toxicology and Chemistry</i> , 1996 , 15, 894-905	3.8	17
24	Relative potency of polychlorinated dibenzo-p-dioxins and dibenzofurans for inducing mixed-function oxygenase activity in rainbow trout. <i>Environmental Toxicology and Chemistry</i> , 1995 , 14, 1041-1050	3.8	46
23	Long-term fate and bioavailability of sediment-associated polychlorinated dibenzo-p-dioxins in aquatic mesocosms. <i>Environmental Toxicology and Chemistry</i> , 1995 , 14, 1799-1807	3.8	20
22	Using ratios of stable nitrogen and carbon isotopes to characterize the biomagnification of DDE, mirex, and PCB in a Lake Ontario pelagic food web. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1995 , 52, 2660-2674	2.4	133
21	Hepatic 7-ethoxyresorufin-O-deethylase activity, plasma steroid hormone concentrations, and liver bioassay-derived 2,3,7,8-TCDD toxic equivalent concentrations in wild white sucker (Catostomus commersoni) caged in bleached kraft pulp mill effluent. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1995 , 52, 1339-1350	2.4	24
20	. Environmental Toxicology and Chemistry, 1995 , 14, 1041	3.8	5
19	Survey of receiving-water environmental impacts associated with discharges from pulp mills: 1. Mill characteristics, receiving-water chemical profiles and lab toxicity tests. <i>Environmental Toxicology and Chemistry</i> , 1994 , 13, 1075-1088	3.8	27
18	Survey of receiving-water environmental impacts associated with discharges from pulp mills: 2. Gonad size, liver size, hepatic erod activity and plasma sex steroid levels in white sucker. <i>Environmental Toxicology and Chemistry</i> , 1994 , 13, 1089-1101	3.8	148
17	Survey of receiving-water environmental impacts associated with discharges from pulp mills: 3. Polychlorinated dioxins and furans in muscle and liver of white sucker (Catostomus commersoni). <i>Environmental Toxicology and Chemistry</i> , 1994 , 13, 1103-1115	3.8	23
16	Survey of receiving-water environmental impacts associated with discharges from pulp mills: 4. Bioassay-derived 2,3,7,8-tetrachlorodibenzo-P-dioxin toxic equivalent concentration in white sucker (catostomus commersoni) in relation to biochemical indicators of impact. <i>Environmental</i>	3.8	15
15	Identification of Lampricide Formulations as a Potent Inducer of MFO Activity in Fish. <i>Journal of Great Lakes Research</i> , 1994 , 20, 355-365	3	21
14	Bioconcentration of pyrethroid insecticides and DDT by rainbow trout: uptake, depuration, and effect of dissolved organic carbon. <i>Aquatic Toxicology</i> , 1994 , 29, 223-240	5.1	58
13	. Environmental Toxicology and Chemistry, 1994 , 13, 1089	3.8	126
12	. Environmental Toxicology and Chemistry, 1994 , 13, 1117	3.8	23

LIST OF PUBLICATIONS

11	. Environmental Toxicology and Chemistry, 1994 , 13, 1103	3.8	26
10	. Environmental Toxicology and Chemistry, 1994 , 13, 1075	3.8	29
9	Environmental Fate of Polychlorinated Dibenzo-p-dioxins in Lake Enclosures. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1992 , 49, 722-734	2.4	14
8	Bioavailability of Polychlorinated Dibenzo-p-dioxins in Lake Enclosures. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 1992 , 49, 735-742	2.4	20
7	Effect of suspended sediment concentration on the sediment to water partition coefficient for 1,3,6,8-tetrachlorodibenzo-p-dioxin. <i>Environmental Science & Environmental Scie</i>	10.3	37
6	Effect of dissolved organic matter from Canadian shield lakes on the bioavailability of 1,3,6,8-Tetrachlorodibenzo-p-dioxin to the amphipod Crangonyx laurentianus. <i>Environmental Toxicology and Chemistry</i> , 1989 , 8, 141-150	3.8	39
5	The effect of dissolved organic matter on the bioavailability of polychlorinated dibenzo-p-dioxins. <i>Aquatic Toxicology</i> , 1989 , 14, 169-184	5.1	67
4	. Environmental Toxicology and Chemistry, 1989 , 8, 141	3.8	11
3	Lack of bioaccumulation of metals by Elliptio complanata (Bivalvia) during acidic snowmelt in three south-central Ontario streams. <i>Bulletin of Environmental Contamination and Toxicology</i> , 1987 , 38, 762-8	2.7	18
2	The effect of short-term acidification during spring snovvmelt on selected Mollusca in south-central Ontario. <i>Canadian Journal of Zoology</i> , 1986 , 64, 1690-1695	1.5	13
1	Reproduction of selected Mollusca in some low alkalinity lakes in south-central Ontario. <i>Canadian Journal of Zoology</i> , 1985 , 63, 511-515	1.5	24