
Nobuhiro Ishida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4207249/publications.pdf Version: 2024-02-01

Νοβιιμίρο Ιςμίολ

#	Article	IF	CITATIONS
1	Improved Recovery and Selectivity of Lanthanide-Ion-Binding Cyclic Peptide Hosts by Changing the Position of Acidic Amino Acids. Minerals (Basel, Switzerland), 2022, 12, 148.	2.0	1
2	Reduction of the Cytotoxicity of Copper (II) Oxide Nanoparticles by Coating with a Surface-Binding Peptide. Applied Biochemistry and Biotechnology, 2020, 190, 645-659.	2.9	8
3	The origins of binding specificity of a lanthanide ion binding peptide. Scientific Reports, 2020, 10, 19468.	3.3	8
4	Self-assembled Cuprous Coordination Polymer as a Catalyst for CO ₂ Electrochemical Reduction into C ₂ Products. ACS Catalysis, 2020, 10, 10412-10419.	11.2	44
5	Direct Recovery of the Rare Earth Elements Using a Silk Displaying a Metal-Recognizing Peptide. Molecules, 2020, 25, 761.	3.8	2
6	CO ₂ conversion by high-dose rate electron beam irradiation: one-step, metal-free and simultaneous production of H ₂ , CO, CH ₄ , C ₂ H ₆ and organic acids from an acid-decomposed CaCO ₃ /additive EtOH mixture. Green Chemistry, 2019, 21, 3091-3098.	9.0	2
7	Ordered silica mineralization by regulating local reaction conditions. Biomaterials Science, 2018, 6, 2316-2319.	5.4	6
8	Rationally designed mineralization for selective recovery of the rare earth elements. Nature Communications, 2017, 8, 15670.	12.8	55
9	Direct Ethanol Production from Ionic Liquid-Pretreated Lignocellulosic Biomass by Cellulase-Displaying Yeasts. Applied Biochemistry and Biotechnology, 2017, 182, 229-237.	2.9	41
10	Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose. Scientific Reports, 2015, 5, 11848.	3.3	42
11	Metabolic flux analysis of genetically engineered Saccharomyces cerevisiae that produces lactate under micro-aerobic conditions. Bioprocess and Biosystems Engineering, 2013, 36, 1261-1265.	3.4	7
12	Disruption of multiple genes whose deletion causes lactic-acid resistance improves lactic-acid resistance and productivity in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2013, 115, 467-474.	2.2	36
13	Low melting point pyridinium ionic liquid pretreatment for enhancing enzymatic saccharification of cellulosic biomass. Bioresource Technology, 2013, 135, 103-108.	9.6	28
14	Hybrid Nanocellulosome Design from Cellulase Modules on Nanoparticles: Synergistic Effect of Catalytically Divergent Cellulase Modules on Cellulose Degradation Activity. ACS Catalysis, 2013, 3, 1342-1348.	11.2	14
15	Fed-batch system for cultivating genetically engineered yeast that produces lactic acid via the fermentative promoter. Journal of Bioscience and Bioengineering, 2013, 115, 193-195.	2.2	3
16	A nanocluster design for the construction of artificial cellulosomes. Catalysis Science and Technology, 2012, 2, 499.	4.1	22
17	Investigation of utilization of the algal biomass residue after oil extraction to lower the total production cost of biodiesel. Journal of Bioscience and Bioengineering, 2012, 114, 330-333.	2.2	37
18	Exploring the conformational space of amorphous cellulose using NMR chemical shifts. Carbohydrate Polymers, 2012, 90, 1197-1203.	10.2	61

Nobuhiro Ishida

#	Article	IF	CITATIONS
19	Ionic liquid/water interfacial localization of a green fluorescent protein fused to a tryptophan-rich peptide. Journal of Bioscience and Bioengineering, 2012, 113, 160-165.	2.2	5
20	Short time ionic liquids pretreatment on lignocellulosic biomass to enhance enzymatic saccharification. Bioresource Technology, 2012, 103, 446-452.	9.6	64
21	Direct bioethanol production from cellulose by the combination of cellulase-displaying yeast and ionic liquid pretreatment. Green Chemistry, 2011, 13, 2948.	9.0	64
22	Enhancement of Cellulolytic Enzyme Activity by Clustering Cellulose Binding Domains on Nanoscaffolds. Small, 2011, 7, 656-664.	10.0	38
23	pH-uncontrolled lactic acid fermentation with activated carbon as an adsorbent. Enzyme and Microbial Technology, 2011, 48, 526-530.	3.2	37
24	Screening of Optimal Cellulases from Symbiotic Protists of Termites through Expression in the Secretory Pathway of <i>Saccharomyces cerevisiae</i> . Bioscience, Biotechnology and Biochemistry, 2011, 75, 2260-2263.	1.3	13
25	Promotion of Efficient Saccharification of Crystalline Cellulose by <i>Aspergillus fumigatus</i> Swo1. Applied and Environmental Microbiology, 2010, 76, 2556-2561.	3.1	95
26	Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Applied Microbiology and Biotechnology, 2009, 82, 883-890.	3.6	79
27	Application of metabolically engineered Saccharomyces cerevisiae to extractive lactic acid fermentation. Biochemical Engineering Journal, 2009, 44, 251-255.	3.6	17
28	Fermentative lactic acid production with a metabolically engineered yeast immobilized in photo-crosslinkable resins. Biochemical Engineering Journal, 2009, 47, 66-70.	3.6	9
29	Extractive lactic acid fermentation with tri-n-decylamine as the extractant. Enzyme and Microbial Technology, 2009, 44, 350-354.	3.2	37
30	Lactic fermentation of cellobiose by a yeast strain displaying β-glucosidase on the cell surface. Applied Microbiology and Biotechnology, 2008, 79, 481-8.	3.6	45
31	Metabolic Engineering of Saccharomyces cerevisiae for Efficient Production of Pure L-(+)-Lactic Acid. , 2006, , 795-807.		2
32	d-Lactic acid production by metabolically engineered Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2006, 101, 172-177.	2.2	102
33	Metabolic Engineering of <i>Saccharomyces cerevisiae</i> for Efficient Production of Pure L-(+)-Lactic Acid. Applied Biochemistry and Biotechnology, 2006, 131, 795-807.	2.9	47
34	The Effect of Pyruvate Decarboxylase Gene Knockout in <i>Saccharomyces cerevisiae</i> on <scp>L</scp> -Lactic Acid Production. Bioscience, Biotechnology and Biochemistry, 2006, 70, 1148-1153.	1.3	80
35	Efficient Production of l -Lactic Acid by Metabolically Engineered Saccharomyces cerevisiae with a Genome-Integrated l -Lactate Dehydrogenase Gene. Applied and Environmental Microbiology, 2005, 71, 1964-1970.	3.1	118
36	Genetically Engineered Wine Yeast Produces a High Concentration of l -Lactic Acid of Extremely High Optical Purity. Applied and Environmental Microbiology, 2005, 71, 2789-2792.	3.1	120

#	Article	IF	CITATIONS
37	Transposon tagging in rice. , 1997, , 219-229.		40
38	Metabolic engineering of Saccharomyces cerevisiae for efficient production of pure lâ^'(+)â^'lactic acid. Applied Biochemistry and Biotechnology, 1996, 131, 795-807.	2.9	1