
Bo Pang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/420700/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications. Advanced Materials, 2021, 33, e2005569.	21.0	311
2	Cellulose Nanopaper: Fabrication, Functionalization, and Applications. Nano-Micro Letters, 2022, 14, 104.	27.0	161
3	Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Carbohydrate Polymers, 2021, 267, 118220.	10.2	99
4	Water-in-oil Pickering emulsions stabilized by stearoylated microcrystalline cellulose. Journal of Colloid and Interface Science, 2018, 513, 629-637.	9.4	63
5	Comparative study of two different alkali-mechanical pretreatments of corn stover for bioethanol production. Fuel, 2018, 221, 21-27.	6.4	61
6	Structure Selectivity of Alkaline Periodate Oxidation on Lignocellulose for Facile Isolation of Cellulose Nanocrystals. Angewandte Chemie - International Edition, 2020, 59, 3218-3225.	13.8	50
7	Recent progress on Pickering emulsions stabilized by polysaccharides-based micro/nanoparticles. Advances in Colloid and Interface Science, 2021, 296, 102522.	14.7	50
8	Facile fabrication of pH-responsive nanoparticles from cellulose derivatives via Schiff base formation for controlled release. Carbohydrate Polymers, 2019, 216, 113-118.	10.2	48
9	Two stages of treatments for upgrading bleached softwood paper grade pulp to dissolving pulp for viscose production. Biochemical Engineering Journal, 2014, 82, 183-187.	3.6	38
10	Sustainable production of cellulose nanofibrils from Kraft pulp for the stabilization of oil-in-water Pickering emulsions. Industrial Crops and Products, 2022, 185, 115123.	5.2	36
11	Production of furfural from waste aqueous hemicellulose solution of hardwood over ZSM-5 zeolite. Bioresource Technology, 2014, 172, 453-456.	9.6	35
12	Preparation and characterization of antibacterial paper coated with sodium lignosulfonate stabilized ZnO nanoparticles. RSC Advances, 2016, 6, 9753-9759.	3.6	31
13	Comparative study of pretreated corn stover for sugar production using cotton pulping black liquor (CPBL) instead of sodium hydroxide. Industrial Crops and Products, 2016, 84, 97-103.	5.2	27
14	pH-responsive polymeric nanoparticles with tunable sizes for targeted drug delivery. RSC Advances, 2020, 10, 4860-4868.	3.6	25
15	High-Internal-Phase Pickering Emulsions Stabilized by Polymeric Dialdehyde Cellulose-Based Nanoparticles. ACS Sustainable Chemistry and Engineering, 2020, 8, 7371-7379.	6.7	25
16	Optimization of Alkaline Sulfite Pretreatment and Comparative Study with Sodium Hydroxide Pretreatment for Improving Enzymatic Digestibility of Corn Stover. Journal of Agricultural and Food Chemistry, 2015, 63, 3229-3234.	5.2	20
17	Efficient, Selfâ€Terminating Isolation of Cellulose Nanocrystals through Periodate Oxidation in Pickering Emulsions. ChemSusChem, 2018, 11, 3581-3585.	6.8	20
18	Robust, Easyâ€Cleaning Superhydrophobic/Superoleophilic Copper Meshes for Oil/Water Separation under Harsh Conditions. Advanced Materials Interfaces, 2019, 6, 1900158.	3.7	20

Bo Pang

#	Article	IF	CITATIONS
19	Helical Fibers via Evaporationâ€Driven Selfâ€Assembly of Surfaceâ€Acylated Cellulose Nanowhiskers. Angewandte Chemie - International Edition, 2018, 57, 16323-16328.	13.8	17
20	High internal phase Pickering emulsions stabilized by dialdehyde amylopectin/chitosan complex nanoparticles. Carbohydrate Polymers, 2021, 258, 117655.	10.2	16
21	One-Step Synthesis of Quadrilateral-Shaped Silver Nanoplates with Lamellar Structures Tuned by Amylopectin Derivatives. ACS Omega, 2018, 3, 6841-6848.	3.5	15
22	Superhydrophobic/Superoleophilic: Robust, Easyâ€Cleaning Superhydrophobic/Superoleophilic Copper Meshes for Oil/Water Separation under Harsh Conditions (Adv. Mater. Interfaces 11/2019). Advanced Materials Interfaces, 2019, 6, 1970069.	3.7	15
23	Water sprays formed by impinging millimeter-sized droplets on superhydrophobic meshes. Physics of Fluids, 2021, 33, .	4.0	14
24	Helical Fibers via Evaporationâ€Driven Selfâ€Assembly of Surfaceâ€Acylated Cellulose Nanowhiskers. Angewandte Chemie, 2018, 130, 16561-16566.	2.0	13
25	Characterization of the Detailed Relationships of the Key Variables in the Process of the Alkaline Sulfite Pretreatment of Corn Stover by Multivariate Analysis. BioResources, 2014, 9, .	1.0	12
26	Pickering emulgels reinforced with host–guest supramolecular inclusion complexes for high fidelity direct ink writing. Materials Horizons, 2022, 9, 835-840.	12.2	12
27	Structure Selectivity of Alkaline Periodate Oxidation on Lignocellulose for Facile Isolation of Cellulose Nanocrystals. Angewandte Chemie, 2020, 132, 3244-3251.	2.0	10
28	Macroscalar Helices Coâ€Assembled from Chiralityâ€Transferring Temperatureâ€Responsive Carbohydrateâ€Based Bolaamphiphiles and 1,4â€Benzenediboronic Acid. Angewandte Chemie - International Edition, 2021, 60, 9712-9718.	13.8	10
29	Study on the derivation of cassava residue and its application in surface sizing. International Journal of Biological Macromolecules, 2019, 128, 80-84.	7.5	9
30	Selfâ€Assembly of Surfaceâ€Acylated Cellulose Nanowhiskers and Graphene Oxide for Multiresponsive Janusâ€Like Films with Timeâ€Dependent Dryâ€State Structures. Small, 2020, 16, e2004922.	10.0	7
31	Multiresponsive Janusâ€Like Films: Selfâ€Assembly of Surfaceâ€Acylated Cellulose Nanowhiskers and Graphene Oxide for Multiresponsive Janusâ€Like Films with Timeâ€Dependent Dryâ€State Structures (Small) Tj E	et qq1 01 0	.784314 rg8
32	Breath figure templated self-assembly of surface-acylated cellulose nanowhiskers confined as honeycomb films. Cellulose, 2021, 28, 10939-10951.	4.9	2
33	Coassemblierung von Helices auf Makroebene durch chiralitÃæstransferierende, temperaturresponsive, Kohlenhydratâ€basierte Bolaamphiphile und 1,4â€Phenylenbisboronsäre. Angewandte Chemie, 2021, 133, 9798-9804.	2.0	0