
William Joyce

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4206672/publications.pdf Version: 2024-02-01

WILLIAM LOVCE

#	Article	IF	CITATIONS
1	Suppression of reactive oxygen species generation in heart mitochondria from anoxic turtles: the role of complex I S-nitrosation. Journal of Experimental Biology, 2018, 221, .	1.7	39
2	What determines systemic blood flow in vertebrates?. Journal of Experimental Biology, 2020, 223, .	1.7	37
3	The electrocardiogram of vertebrates: Evolutionary changes from ectothermy to endothermy. Progress in Biophysics and Molecular Biology, 2019, 144, 16-29.	2.9	36
4	Individual variation in whole-animal hypoxia tolerance is associated with cardiac hypoxia tolerance in a marine teleost. Biology Letters, 2016, 12, 20150708.	2.3	34
5	Exploring nature's natural knockouts: <i>In vivo</i> cardiorespiratory performance of Antarctic fishes during acute warming. Journal of Experimental Biology, 2018, 221, .	1.7	23
6	Weighing the evidence for using vascular conductance, not resistance, in comparative cardiovascular physiology. Journal of Experimental Biology, 2019, 222, .	1.7	22
7	The effects of thermal acclimation on cardio-respiratory performance in an Antarctic fish (<i>Notothenia coriiceps</i>). , 2018, 6, coy069.		21
8	Adenosinergic regulation of the cardiovascular system in the red-eared slider Trachemys scripta. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2014, 174, 18-22.	1.8	19
9	<i>In situ</i> cardiac perfusion reveals interspecific variation of intraventricular flow separation in reptiles. Journal of Experimental Biology, 2016, 219, 2220-7.	1.7	18
10	The evolutionary and physiological significance of the Hif pathway in teleost fishes. Journal of Experimental Biology, 2021, 224, .	1.7	16
11	Venous pressures and cardiac filling in turtles during apnoea and intermittent ventilation. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2018, 188, 481-490.	1.5	15
12	The effects of embryonic hypoxic programming on cardiovascular function and autonomic regulation in the American alligator (Alligator mississippiensis) at rest and during swimming. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2018, 188, 967-976.	1.5	14
13	Maximum heart rate does not limit cardiac output at rest or during exercise in the American alligator (<i>Alligator mississippiensis</i>). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R296-R302.	1.8	14
14	Regulation of heart rate in vertebrates during hypoxia: A comparative overview. Acta Physiologica, 2022, 234, e13779.	3.8	14
15	Hypoxia inducible factor-1 <i>α</i> knockout does not impair acute thermal tolerance or heat hardening in zebrafish. Biology Letters, 2020, 16, 20200292.	2.3	13
16	Nitrergic cardiovascular regulation in the African lungfish, Protopterus aethiopicus. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2017, 207, 52-56.	1.8	12
17	Purinoceptors exert negative inotropic effects on the heart in all major groups of reptiles. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2014, 171, 16-22.	1.8	11
18	Anoxia and Acidosis Tolerance of the Heart in an Air-Breathing Fish (Pangasianodon hypophthalmus). Physiological and Biochemical Zoology, 2015, 88, 648-659.	1.5	11

WILLIAM JOYCE

#	Article	IF	CITATIONS
19	The effects of hypoxic bradycardia and extracellular HCO3â^'/CO2 on hypoxic performance in the eel heart. Journal of Experimental Biology, 2015, 219, 302-5.	1.7	11
20	Autoregulation of cardiac output is overcome by adrenergic stimulation in the anaconda heart. Journal of Experimental Biology, 2017, 220, 336-340.	1.7	11
21	Similitude in the cardiorespiratory responses to exercise across vertebrates. Current Opinion in Physiology, 2019, 10, 137-145.	1.8	11
22	Smooth Muscle in Cardiac Chambers is Common in Turtles and Extensive in the Emydid Turtle, Trachemys scripta. Anatomical Record, 2020, 303, 1327-1336.	1.4	11
23	How cardiac output is regulated: August Krogh's proto-Guytonian understanding of the importance of venous return. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2021, 253, 110861.	1.8	10
24	Adrenergic and adenosinergic regulation of the cardiovascular system in an Antarctic icefish: Insight into central and peripheral determinants of cardiac output. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 230, 28-38.	1.8	9
25	Regulation of heart rate following genetic deletion of the ß1 adrenergic receptor in larval zebrafish. Acta Physiologica, 2022, 235, .	3.8	8
26	Contraction of atrial smooth muscle reduces cardiac output in perfused turtle hearts. Journal of Experimental Biology, 2019, 222, .	1.7	7
27	The effects of endogenous and exogenous catecholamines on hypoxic cardiac performance in redâ€bellied piranhas. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology, 2019, 331, 27-37.	1.9	6
28	Low incidence of atrial septal defects in nonmammalian vertebrates. Evolution & Development, 2020, 22, 241-256.	2.0	6
29	Regulation of splenic contraction persists as a vestigial trait in whiteâ€blooded Antarctic fishes. Journal of Fish Biology, 2021, 98, 287-291.	1.6	6
30	Contribution of active atrial contraction to cardiac output in anesthetized American alligators (Alligator mississippiensis). Journal of Experimental Biology, 2018, 221, .	1.7	5
31	Resilience of cardiac performance in Antarctic notothenioid fishes in a warming climate. Journal of Experimental Biology, 2021, 224, .	1.7	5
32	Elevated cortisol lowers thermal tolerance but results in limited cardiac remodelling in rainbow trout (<i>Oncorhynchus mykiss</i>) experiencing chronic social stress. Journal of Experimental Biology, 2021, 224, .	1.7	5
33	Response to â€~Flow versus pressure?'. Journal of Experimental Biology, 2020, 223, .	1.7	3
34	Hifâ€lα is not required for the development of cardiac adrenergic control in zebrafish (<i>Danio) Tj ETQq0 0 0 rg</i>	gBT /Overl 1.9	ock 10 Tf 50 3
35	α ₁ -adrenergic stimulation increases ventricular action potential duration in the intact mouse heart. Facets, 2021, 6, 823-836.	2.4	2

 $_{36}$ Catecholamines are key modulators of ventricular repolarization patterns in the ball python (Python) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $_{1.9}^{2}$

WILLIAM JOYCE

#	Article	IF	CITATIONS
37	From pinnipeds to people: divers have elastic arteries. Journal of Experimental Biology, 2016, 219, 2579-2579.	1.7	1
38	Flying is not for the small-hearted. Journal of Experimental Biology, 2018, 221, .	1.7	1
39	Response to â€~What makes the blood go around?'. Journal of Experimental Biology, 2020, 223, .	1.7	1
40	Histamine exerts both direct H2-mediated and indirect catecholaminergic effects on heart rate in pythons. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2021, 191, 347-355.	1.5	1
41	The shark heart crowned. Journal of Experimental Biology, 2016, 219, 3674-3675.	1.7	О
42	More haste, less speed for quolls. Journal of Experimental Biology, 2017, 220, 3003-3004.	1.7	0
43	An ancient origin for the diaphragm. Journal of Experimental Biology, 2017, 220, 737-737.	1.7	Ο
44	White-nose syndrome dehydrates bats. Journal of Experimental Biology, 2017, 220, 4326-4326.	1.7	0
45	A breath of fresh air for lungless salamanders. Journal of Experimental Biology, 2018, 221, .	1.7	0
46	Pythons sacrifice muscle to provide water for their eggs. Journal of Experimental Biology, 2018, 221, .	1.7	0
47	Insulin-resistant cavefish avoid diabetes. Journal of Experimental Biology, 2018, 221, .	1.7	Ο
48	Parenting is hot work for blue tits. Journal of Experimental Biology, 2019, 222, .	1.7	0
49	Kicking kangaroo rats deter rattlesnakes. Journal of Experimental Biology, 2019, 222, .	1.7	0
50	Andean birds with slow metabolism live longer. Journal of Experimental Biology, 2019, 222, .	1.7	0
51	Why a sea snake needs a hole in its head. Journal of Experimental Biology, 2019, 222, .	1.7	Ο
52	Taurine tunes cuttlefish cardiac output. Journal of Experimental Biology, 2016, 219, 1588-1588.	1.7	0
53	Fidgety embryos grow longer limbs. Journal of Experimental Biology, 2017, 220, 1936-1936.	1.7	Ο
54	No evidence for pericardial restraint in the snapping turtle (Chelydra serpentina) following pharmacologically-induced bradycardia at rest or during exercise. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, , .	1.8	0