
Andrew L Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4206614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Free energy and kinetics of cAMP permeation through connexin26 via applied voltage and milestoning. Biophysical Journal, 2021, 120, 2969-2983.	0.5	5
2	A novel voltage-clamp/dye uptake assay reveals saturable transport of molecules through CALHM1 and connexin channels. Journal of General Physiology, 2020, 152, .	1.9	8
3	The connexin26 human mutation N14K disrupts cytosolic intersubunit interactions and promotes channel opening. Journal of General Physiology, 2019, 151, 328-341.	1.9	16
4	Electrical coupling and its channels. Journal of General Physiology, 2018, 150, 1606-1639.	1.9	18
5	Endothelial cAMP deactivates ischemia-reperfusion-induced microvascular hyperpermeability via Rap1-mediated mechanisms. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H179-H189.	3.2	21
6	Non-junctional Cx32 mediates anti-apoptotic and pro-tumor effects via epidermal growth factor receptor in human cervical cancer cells. Cell Death and Disease, 2017, 8, e2773-e2773.	6.3	20
7	Genomic instability induced in distant progeny of bystander cells depends on the connexins expressed in the irradiated cells. International Journal of Radiation Biology, 2017, 93, 1182-1194.	1.8	24
8	Intramolecular signaling in a cardiac connexin: Role of cytoplasmic domain dimerization. Journal of Molecular and Cellular Cardiology, 2017, 111, 69-80.	1.9	5
9	Mechanism of gating by calcium in connexin hemichannels. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7986-E7995.	7.1	75
10	An electrostatic mechanism for Ca2+-mediated regulation of gap junction channels. Nature Communications, 2016, 7, 8770.	12.8	119
11	Computational Studies of Molecular Permeation through Connexin26 Channels. Biophysical Journal, 2016, 110, 584-599.	0.5	17
12	Gap junctions modulate glioma invasion by direct transfer of microRNA. Oncotarget, 2015, 6, 15566-15577.	1.8	125
13	Glutathione release through connexin hemichannels: Implications for chemical modification of pores permeable to large molecules. Journal of General Physiology, 2015, 146, 245-254.	1.9	24
14	Divalent regulation and intersubunit interactions of human Connexin26 (Cx26) hemichannels. Channels, 2014, 8, 1-4.	2.8	23
15	Motifs in the permeation pathway of connexin channels mediate voltage and Ca2+ sensing. Frontiers in Physiology, 2014, 5, 113.	2.8	27
16	Disruption of Salt Bridge Interactions Modifies Gating Kinetics of Connexin Hemichannels. Biophysical Journal, 2013, 104, 631a-632a.	0.5	4
17	The Ionizing Radiation-Induced Bystander Effect: Evidence, Mechanism, and Significance. , 2013, , 35-61.		7
18	Connexin 43 is involved in the generation of human-induced pluripotent stem cells. Human Molecular Genetics, 2013, 22, 2221-2233.	2.9	65

ANDREW L HARRIS

#	Article	IF	CITATIONS
19	Insights on the mechanisms of Ca2+ regulation of connexin26 hemichannels revealed by human pathogenic mutations (D50N/Y). Journal of General Physiology, 2013, 142, 23-35.	1.9	48
20	Human cell responses to ionizing radiation are differentially affected by the expressed connexins. Journal of Radiation Research, 2013, 54, 251-259.	1.6	21
21	Molecular Dynamics Simulations of the Cx26 Hemichannel: Insights into Voltage-Dependent Loop-Gating. Biophysical Journal, 2012, 102, 1341-1351.	0.5	35
22	Monocyte–endothelial adhesion is modulated by Cx43-stimulated ATP release from monocytes. Biochemical and Biophysical Research Communications, 2012, 420, 536-541.	2.1	32
23	Gap junctions propagate opposite effects in normal and tumor testicular cells in response to cisplatin. Cancer Letters, 2012, 317, 165-171.	7.2	53
24	The Role of Gap Junction Communication and Oxidative Stress in the Propagation of Toxic Effects among High-Dose α-Particle-Irradiated Human Cells. Radiation Research, 2011, 175, 347-357.	1.5	57
25	Intercellular Communication Amplifies Stressful Effects in High-Charge, High-Energy (HZE) Particle-Irradiated Human Cells. Journal of Radiation Research, 2011, 52, 408-414.	1.6	20
26	Molecular dynamics simulations of the Cx26 hemichannel: Evaluation of structural models with Brownian dynamics. Journal of General Physiology, 2011, 138, 475-493.	1.9	79
27	Mechanism for modulation of gating of connexin26-containing channels by taurine. Journal of General Physiology, 2011, 138, 321-339.	1.9	28
28	Cisplatin and Oxaliplatin Inhibit Gap Junctional Communication by Direct Action and by Reduction of Connexin Expression, Thereby Counteracting Cytotoxic Efficacy. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 903-911.	2.5	42
29	Tramadol and Flurbiprofen Depress the Cytotoxicity of Cisplatin via Their Effects on Gap Junctions. Clinical Cancer Research, 2009, 15, 5803-5810.	7.0	53
30	Post-translational modifications of connexin26 revealed by mass spectrometry. Biochemical Journal, 2009, 424, 385-398.	3.7	54
31	Connexin channels and phospholipids: association and modulation. BMC Biology, 2009, 7, 52.	3.8	43
32	Gating on the outside. Journal of General Physiology, 2009, 133, 549-553.	1.9	3
33	Permeability of Connexin Channels. , 2009, , 165-206.		18
34	Connexin Specificity of Second Messenger Permeation: Real Numbers At Last. Journal of General Physiology, 2008, 131, 287-292.	1.9	16
35	Connexin Specificity of Second Messenger Permeation: Real Numbers At Last. Journal of Cell Biology, 2008, 181, i7-i7.	5.2	0
36	2-Aminoethoxydiphenyl Borate Directly Inhibits Channels Composed of Connexin26 and/or Connexin32. Molecular Pharmacology, 2007, 71, 570-579.	2.3	70

ANDREW L HARRIS

#	Article	IF	CITATIONS
37	Gap junction channel structure in the early 21st century: facts and fantasies. Current Opinion in Cell Biology, 2007, 19, 521-528.	5.4	132
38	Connexin channel permeability to cytoplasmic molecules. Progress in Biophysics and Molecular Biology, 2007, 94, 120-143.	2.9	396
39	Nature of Cx30-containing channels in the adult mouse mammary gland. Cell and Tissue Research, 2007, 328, 97-107.	2.9	25
40	Isoelectric points and postâ€translational modifications of connexin26 and connexin32. FASEB Journal, 2006, 20, 1221-1223.	0.5	44
41	Heteromeric, but Not Homomeric, Connexin Channels Are Selectively Permeable to Inositol Phosphates. Journal of Biological Chemistry, 2006, 281, 16727-16739.	3.4	61
42	Lipid Rafts Prepared by Different Methods Contain Different Connexin Channels, but Gap Junctions Are Not Lipid Rafts. Biochemistry, 2005, 44, 13027-13042.	2.5	78
43	Reversible Pore Block of Connexin Channels by Cyclodextrins. Journal of Biological Chemistry, 2004, 279, 22883-22892.	3.4	31
44	Biochemical Requirements for Inhibition of Connexin26-containing Channels by Natural and Synthetic Taurine Analogs. Journal of Biological Chemistry, 2004, 279, 38544-38554.	3.4	22
45	Neutral, acidic, and basic derivatives of anthranilamide that confer different formal charge to reducing oligosaccharides. Carbohydrate Research, 2004, 339, 221-231.	2.3	15
46	Altered permeability and modulatory character of connexin channels during mammary gland development. Experimental Cell Research, 2004, 298, 643-660.	2.6	62
47	Tetracycline-regulated expression enables purification and functional analysis of recombinant connexin channels from mammalian cells. Biochemical Journal, 2004, 383, 111-119.	3.7	46
48	Open Pore Block of Connexin26 and Connexin32 Hemichannels by Neutral, Acidic and Basic Glycoconjugates. Cell Communication and Adhesion, 2003, 10, 239-244.	1.0	6
49	Voltage-sensing and Substate Rectification. Journal of General Physiology, 2002, 119, 165-170.	1.9	23
50	Exploring Hemichannel Permeability In Vitro. , 2001, 154, 357-377.		24
51	Emerging issues of connexin channels: biophysics fills the gap. Quarterly Reviews of Biophysics, 2001, 34, 325-472.	5.7	709
52	Regulation of Connexin Channels by pH. Journal of Biological Chemistry, 1999, 274, 3711-3719.	3.4	89
53	Direct High Affinity Modulation of Connexin Channel Activity by Cyclic Nucleotides. Journal of Biological Chemistry, 1999, 274, 3720-3725.	3.4	41
54	Different Ionic Selectivities for Connexins 26 and 32 Produce Rectifying Gap Junction Channels. Biophysical Journal, 1999, 77, 2968-2987.	0.5	92

ANDREW L HARRIS

#	Article	IF	CITATIONS
55	Isoform Composition of Connexin Channels Determines Selectivity among Second Messengers and Uncharged Molecules. Journal of Biological Chemistry, 1998, 273, 2808-2816.	3.4	290
56	Channel-Forming Activity of Immunoaffinity-Purified Connexin32 in Single Phospholipid Membranes. Biochemistry, 1996, 35, 9212-9223.	2.5	46
57	Selectivity of Connexin-Specific Gap Junctions Does Not Correlate With Channel Conductance. Circulation Research, 1995, 77, 1156-1165.	4.5	227
58	Connexin-32: A Protein That Forms Channels through One or Two Membranes. Advances in Chemistry Series, 1994, , 197-223.	0.6	2
59	Transport-Specific isolation of large channels reconstituted into lipid vesicles. Journal of Membrane Biology, 1989, 109, 243-250.	2.1	20