George A Anastassiou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4206578/publications.pdf

Version: 2024-02-01

310 papers

2,879 citations

257450 24 h-index 233421 45 g-index

365 all docs 365 docs citations

365 times ranked 692 citing authors

#	Article	IF	CITATIONS
1	Fractional Differentiation Inequalities. , 2009, , .		210
2	Fuzzy Mathematics: Approximation Theory. Studies in Fuzziness and Soft Computing, 2010, , .	0.8	139
3	Rate of Convergence of Some Neural Network Operators to the Unit-Univariate Case. Journal of Mathematical Analysis and Applications, 1997, 212, 237-262.	1.0	137
4	Multivariate sigmoidal neural network approximation. Neural Networks, 2011, 24, 378-386.	5.9	122
5	Principles of delta fractional calculus on time scales and inequalities. Mathematical and Computer Modelling, 2010, 52, 556-566.	2.0	111
6	Fractional neural network approximation. Computers and Mathematics With Applications, 2012, 64, 1655-1676.	2.7	111
7	On right fractional calculus. Chaos, Solitons and Fractals, 2009, 42, 365-376.	5.1	110
8	Univariate hyperbolic tangent neural network approximation. Mathematical and Computer Modelling, 2011, 53, 1111-1132.	2.0	109
9	Nabla discrete fractional calculus and nabla inequalities. Mathematical and Computer Modelling, 2010, 51, 562-571.	2.0	99
10	Intelligent Mathematics: Computational Analysis. Intelligent Systems Reference Library, $2011,\ldots$	1,2	91
11	Ostrowski type inequalities. Proceedings of the American Mathematical Society, 1995, 123, 3775-3775.	0.8	82
12	Intelligent Computations: Abstract Fractional Calculus, Inequalities, Approximations. Studies in Computational Intelligence, 2018, , .	0.9	81
13	Fractional representation formulae and right fractional inequalities. Mathematical and Computer Modelling, 2011, 54, 3098-3115.	2.0	66
14	Intelligent Systems: Approximation by Artificial Neural Networks. Intelligent Systems Reference Library, 2011, , .	1.2	61
15	Multivariate hyperbolic tangent neural network approximation. Computers and Mathematics With Applications, 2011, 61, 809-821.	2.7	56
16	Foundations of nabla fractional calculus on time scales and inequalities. Computers and Mathematics With Applications, 2010, 59, 3750-3762.	2.7	55
17	Approximation Theory. , 2000, , .		53
18	Univariate Ostrowski Inequalities, Revisited. Monatshefte Fur Mathematik, 2002, 135, 175-189.	0.9	49

#	Article	IF	Citations
19	Strong right fractional calculus for Banach space valued functions. Proyecciones, 2017, 36, 149-186.	0.3	43
20	Fractional Korovkin theory. Chaos, Solitons and Fractals, 2009, 42, 2080-2094.	5.1	40
21	Statistical fuzzy approximation by fuzzy positive linear operators. Computers and Mathematics With Applications, 2008, 55, 573-580.	2.7	37
22	GEOMETRIC AND APPROXIMATION PROPERTIES OF GENERALIZED SINGULAR INTEGRALS IN THE UNIT DISK. Journal of the Korean Mathematical Society, 2006, 43, 425-443.	0.4	36
23	Intelligent Comparisons: Analytic Inequalities. Studies in Computational Intelligence, 2016, , .	0.9	35
24	Approximation by Complex Bernstein-Durrmeyer Polynomials in Compact Disks. Mediterranean Journal of Mathematics, 2010, 7, 471-482.	0.8	28
25	A Baskakov type generalization of statistical Korovkin theory. Journal of Mathematical Analysis and Applications, 2008, 340, 476-486.	1.0	27
26	Approximation by Neural Networks Iterates. Springer Proceedings in Mathematics and Statistics, 2013, , $1\text{-}20$.	0.2	24
27	Opial type inequalities involving Riemann–Liouville fractional derivatives of two functions with applications. Mathematical and Computer Modelling, 2008, 48, 344-374.	2.0	22
28	Local fractional integrals involving generalized strongly m-convex mappings. Arabian Journal of Mathematics, 2019, 8, 95-107.	0.9	22
29	Approximation by complex Bernstein–Schurer and Kantorovich–Schurer polynomials in compact disks. Computers and Mathematics With Applications, 2009, 58, 734-743.	2.7	19
30	Generalized Fractional Calculus. Studies in Systems, Decision and Control, 2021, , .	1.0	18
31	Bivariate monotone approximation. Proceedings of the American Mathematical Society, 1991, 112, 959-964.	0.8	17
32	Opial type inequalities involvingfractional derivatives of two functions and applications. Computers and Mathematics With Applications, 2004, 48, 1701-1731.	2.7	16
33	Korovkin inequalities for stochastic processes. Journal of Mathematical Analysis and Applications, 1991, 157, 366-384.	1.0	15
34	Univariate fuzzy-random neural network approximation operators. Computers and Mathematics With Applications, 2004, 48, 1263-1283.	2.7	15
35	Balanced fractional opial inequalities. Chaos, Solitons and Fractals, 2009, 42, 1523-1528.	5.1	15
36	Monotone Convergence of Extended Iterative Methods and Fractional Calculus with Applications. Fundamenta Informaticae, 2017, 151, 241-253.	0.4	15

#	Article	IF	Citations
37	Generalized Picard singular integrals. Computers and Mathematics With Applications, 2009, 57, 821-830.	2.7	14
38	Approximation by Multivariate Singular Integrals. SpringerBriefs in Mathematics, 2011, , .	0.3	14
39	Higher Order Multivariate Fuzzy Approximation by basic Neural Network Operators. Cubo, 2014, 16, 21-35.	0.5	13
40	Taylor–Widder representation formulae and Ostrowski, Grüss, integral means and Csiszar type inequalities. Computers and Mathematics With Applications, 2007, 54, 9-23.	2.7	12
41	Approximation by Positive Sublinear Operators. Studies in Systems, Decision and Control, 2018, , 1-17.	1.0	12
42	Lattice homomorphism Korovkin type inequalities for vector valued functions. Hokkaido Mathematical Journal, 1997, 26, .	0.3	12
43	A study of positive linear operators by the method of moments, one-dimensional case. Journal of Approximation Theory, 1985, 45, 247-270.	0.8	11
44	Global smoothness and uniform convergence of smooth Gauss–Weierstrass singular operators. Mathematical and Computer Modelling, 2009, 50, 984-998.	2.0	11
45	Uniform convergence with rates of smooth Gauss–Weierstrass singular integral operators. Applicable Analysis, 2009, 88, 1015-1037.	1.3	11
46	A Voronovskaya Type Theorem for Poisson–Cauchy Type singular operators. Journal of Mathematical Analysis and Applications, 2010, 366, 525-529.	1.0	11
47	Global smoothness preservation by singular integrals. Proyecciones, 1995, 14, 83-88.	0.3	11
48	Abstract generalized fractional Landau inequalities over $\mathbb{R}\$. Constructive Mathematical Analysis, 2021, 4, 34-47.	0.7	11
49	Rate of convergence of non-positive generalized convolution type operators. Journal of Mathematical Analysis and Applications, 1989, 142, 441-451.	1.0	10
50	Chebyshev–Grüss type inequalities via Euler type and Fink identities. Mathematical and Computer Modelling, 2007, 45, 1189-1200.	2.0	10
51	Hilbert–Pachpatte type fractional integral inequalities. Mathematical and Computer Modelling, 2009, 49, 1539-1550.	2.0	9
52	Foundations of General Fractional Analysis for Banach Space Valued Functions. Studies in Computational Intelligence, 2018, , 87-145.	0.9	9
53	General Fractional Opial Type Inequalities. Acta Applicandae Mathematicae, 1998, 54, 303-317.	1.0	8
54	High order Ostrowski type inequalities. Applied Mathematics Letters, 2007, 20, 616-621.	2.7	8

#	Article	IF	CITATIONS
55	Multivariate stochastic Korovkin theory given quantitatively. Mathematical and Computer Modelling, 2008, 48, 558-580.	2.0	8
56	Uniform convergence with rates for smooth Poisson–Cauchy-type singular integral operators. Mathematical and Computer Modelling, 2009, 50, 1553-1570.	2.0	8
57	Global smoothness and uniform convergence of smooth Poisson–Cauchy type singular operators. Applied Mathematics and Computation, 2009, 215, 1718-1731.	2.2	8
58	Sharp inequalities for convolution-type operators. Journal of Approximation Theory, 1989, 58, 259-266.	0.8	7
59	Prokhorov Radius of a Neighborhood of Zero Described by Three Moment Constraints. Journal of Global Optimization, 2000, 16, 33-41.	1.8	7
60	Multivariate Fink type identity and multivariate Ostrowski, comparison of means and Grýss type inequalities. Mathematical and Computer Modelling, 2007, 46, 351-374.	2.0	7
61	xmins:xocs="http://www.eisevier.com/xmi/xocs/dtd" xmins:xs="http://www.w3.org/2001/XMLSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	2.7	7
62	xmins:sb="http://www.elsevier.com/xmi/common/struct-bib/dtd" xmins:ce="htt. Applied Mathematics Let qâ" Fractional Inequalities. Cubo, 2011, 13, 61-71.	0.5	7
63	Multivariate Lyapunov inequalities. Applied Mathematics Letters, 2011, 24, 2167-2171.	2.7	7
64	Uniform Approximation by General Multivariate Singular Integral Operators. SpringerBriefs in Mathematics, 2011 , , $1\text{-}17$.	0.3	7
65	Univariate Sigmoidal Neural Network Quantitative Approximation. Intelligent Systems Reference Library, 2011, , 1-32.	1.2	7
66	Univariate Hardy-Type Fractional Inequalities. , 2013, , 21-56.		7
67	The Levy radius of a set of probability measures satisfying basic moment conditions involving $\{t,t2\}$. Constructive Approximation, 1987, 3, 257-263.	3.0	6
68	Moment problems and their applications to the stability of queueing models. Computers and Mathematics With Applications, 1992, 24, 229-246.	2.7	6
69	Fractional Opial Type Inequalities and Fractional Differential Equations. Resultate Der Mathematik, 2002, 41, 197-212.	0.2	6
70	Ostrowski and Landau inequalities for Banach space valued functions. Mathematical and Computer Modelling, 2012, 55, 312-329.	2.0	6
71	Approximation by multivariate sublinear and max-product operators. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2019, 113, 507-540.	1,2	6
72	Univariate Right Caputo Fractional Ostrowski Inequalities. SpringerBriefs in Mathematics, 2011, , 21-27.	0.3	6

#	Article	IF	Citations
73	On some shift invariant integral operators, univariate case. Annales Polonici Mathematici, 1995, 61, 225-243.	0.5	6
74	APPROXIMATION BY DISCRETE SINGULAR OPERATORS. Cubo, 2013, 15, 97-112.	0.5	6
75	General Theory of Global Smoothness Preservation by Singular Integrals, Univariate Case. Journal of Statistical Computational Analysis and Applications 1999, 11,289-317, Statistical Commitment altimg = single display="inline" overflow="scroll"	0.2	5
76	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	2.7	5
77	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/x ON GAUSS-WEIERSTRASS TYPE INTEGRAL OPERATORS. Demonstratio Mathematica, 2010, 43, 841-850.	1.5	5
78	Statistical Korovkin Theory for Multivariate Stochastic Processes. Stochastic Analysis and Applications, 2010, 28, 648-661.	1.5	5
79	Representations and Ostrowski type inequalities on time scales. Computers and Mathematics With Applications, 2011, 62, 3933-3958. Left Caputo fractional <a <="" display="inline" href="mathaltimg=" overflow="scroll" sil.gif"="" td=""><td>2.7</td><td>5</td>	2.7	5
80	Left Caputo fractional <mml:math <="" altimg="si1.gif" display="inline" overflow="scroll" td="" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><td>2.7</td><td>5</td></mml:math>	2.7	5
81	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsev. Applied FRACTIONAL APPROXIMATION BY NORMALIZED BELL AND SQUASHING TYPE NEURAL NETWORK OPERATORS. New Mathematics and Natural Computation, 2013, 09, 43-63.	0.7	5
82	High Order Approximation by Max-Product Operators. Studies in Systems, Decision and Control, 2018, , 19-42.	1.0	5
83	General Multivariate Iyengar Type Inequalities. Constructive Mathematical Analysis, 0, , 64-81.	0.7	5
84	Fuzzy Fractional Neural Network Approximation by Fuzzy Quasi-interpolation Operators. Journal of Applied Nonlinear Dynamics, 2013, 2, 235-259.	0.3	5
85	Multivariate Fuzzy-Random Error Function Relied Neural Network Approximations. Studies in Computational Intelligence, 2016, , 497-521.	0.9	5
86	Univariate Error Function Based Neural Network Approximations. Studies in Computational Intelligence, 2016, , 331-373.	0.9	5
87	On a discrete Korovkin theorem. Journal of Approximation Theory, 1990, 61, 384-386.	0.8	4
88	Weak convergence and the Prokhorov radius. Journal of Mathematical Analysis and Applications, 1992, 163, 541-558.	1.0	4
89	Higher order optimal approximation of Csiszar's -divergence. Nonlinear Analysis: Theory, Methods & Applications, 2005, 61, 309-339.	1.1	4
90	Multivariate fractional Ostrowski type inequalities. Computers and Mathematics With Applications, 2007, 54, 434-447.	2.7	4

#	Article	IF	CITATIONS
91	Higher order Ostrowski type inequalities over Euclidean domains. Journal of Mathematical Analysis and Applications, 2008, 337, 962-968.	1.0	4
92	Lp approximation with rates by multivariate generalized discrete singular operators. Applied Mathematics and Computation, 2015, 265, 652-666.	2.2	4
93	Ordinary and Fractional Approximation by Non-additive Integrals: Choquet, Shilkret and Sugeno Integral Approximators. Studies in Systems, Decision and Control, 2019, , .	1.0	4
94	Foundation of stochastic fractional calculus with fractional approximation of stochastic processes. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2020, 114, 1.	1.2	4
95	Left Generalized High Order Fractional Monotone Approximation. Studies in Computational Intelligence, 2016, , 353-372.	0.9	4
96	Caputo Fractional Approximation Using Positive Sublinear Operators. Studies in Systems, Decision and Control, 2018, , 67-94.	1.0	4
97	Abstract Fractional Monotone Approximation with Applications. Fractal and Fractional, 2021, 5, 158.	3.3	4
98	High Degree Multivariate Fuzzy Approximation by Quasi-Interpolation Neural Network Operators. Discontinuity, Nonlinearity, and Complexity, 2013, 2, 125-146.	0.2	4
99	Caputo Fractional Iyengar Inequalities. Studies in Computational Intelligence, 2020, , 15-28.	0.9	4
100	A discrete Korovkin theorem. Journal of Approximation Theory, 1985, 45, 383-388.	0.8	3
101	High-Order fuzzy approximation by fuzzywavelet type and neural network operators. Computers and Mathematics With Applications, 2004, 48, 1387-1401.	2.7	3
102	Uniqueness for evolution in multidimensional time. Nonlinear Analysis: Theory, Methods & Applications, 2006, 64, 33-41.	1.1	3
103	Opial Type Inequalities for Semigroups. Semigroup Forum, 2007, 75, 624-633.	0.6	3
104	Opial type inequalities for cosine and sine operator functions. Semigroup Forum, 2008, 76, 149-158.	0.6	3
105	Fractional Sobolev-type inequalities. Applicable Analysis, 2008, 87, 607-624.	1.3	3
106	Statistical convergence of double-complex Picard integral operators. Applied Mathematics Letters, 2010, 23, 852-858.	2.7	3
107	On Gauss–Weierstrass type integral operators. Demonstratio Mathematica, 2010, 43, .	1.5	3
108	Fractional Representation Formulae Under Initial Conditions and Fractional Ostrowski Type Inequalities. Demonstratio Mathematica, 2015, 48, .	1.5	3

#	Article	IF	CITATIONS
109	Univariate right fractional polynomial high order monotone approximation. Demonstratio Mathematica, 2016, 49, 1-10.	1.5	3
110	Conformable fractional approximations by max-product operators using convexity. Arabian Journal of Mathematics, 2018, 7, 159-174.	0.9	3
111	Conformable Fractional Approximation by Choquet Integrals. Studies in Systems, Decision and Control, 2019, , 127-148.	1.0	3
112	Quantitative approximation by perturbed Kantorovich–Choquet neural network operators. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2019, 113, 875-900.	1.2	3
113	Caputo generalized Ï-fractional integral inequalities. Journal of Applied Analysis, 2021, 27, 107-120.	0.5	3
114	Caputo fractional lyengar type Inequalities. Cubo, 2019, 21, 1-13.	0.5	3
115	UNIVARIATE LEFT FRACTIONAL POLYNOMIAL HIGH ORDER MONOTONE APPROXIMATION. Bulletin of the Korean Mathematical Society, 2015, 52, 593-601.	0.3	3
116	Generalized Canavati Type Fractional Taylor's Formulae. Studies in Computational Intelligence, 2016, , 413-420.	0.9	3
117	Univariate simultaneous high order abstract fractional monotone approximation with applications. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2022, 116, 1.	1.2	3
118	Generalized Fractional Ostrowski and Gr $\tilde{A}^{1}/4$ ss type inequalities involving several Banach algebra valued function. Revista Integraci \tilde{A}^{3} n, 2022, 40, .	0.1	3
119	Miscellaneous sharp inequalities and Korovkin-type convergence theorems involving sequences of probability measures. Journal of Approximation Theory, 1985, 44, 384-390.	0.8	2
120	On the degree of weak convergence of a sequence of finite measures to the unit measure under convexity. Journal of Approximation Theory, 1987, 51, 333-349.	0.8	2
121	Probabilistic inequalities and remarks. Applied Mathematics Letters, 2002, 15, 153-157.	2.7	2
122	Multidimensional Ostrowski inequalities, revisited. Acta Mathematica Hungarica, 2002, 97, 339-353.	0.5	2
123	Shape preserving approximation in vector ordered spaces. Applied Mathematics Letters, 2005, 18, 1408-1411.	2.7	2
124	On the best approximation of vector valued functions by polynomials with coefficients in vector spaces. Annali Di Matematica Pura Ed Applicata, 2007, 186, 251-265.	1.0	2
125	Poincar \tilde{A} © and Sobolev type inequalities for vector-valued functions. Computers and Mathematics With Applications, 2008, 56, 1102-1113.	2.7	2
126	Reverse Riemann-Liouville fractional opial inequalities for several functions. Complex Variables and Elliptic Equations, 2008, 53, 523-544.	0.8	2

#	Article	IF	CITATIONS
127	Quantitative approximation by fractional smooth Poisson Cauchy singular operators. Computers and Mathematics With Applications, 2010, 60, 122-133.	2.7	2
128	Duality principle of time scales and inequalities. Applicable Analysis, 2010, 89, 1837-1854.	1.3	2
129	Statistical approximation by double complex Gauss–Weierstrass integral operators. Applied Mathematics Letters, 2011, 24, 438-443.	2.7	2
130	Global smoothness preservation and simultaneous approximation for multivariate general singular integral operators. Applied Mathematics Letters, 2011, 24, 1009-1016.	2.7	2
131	Approximations by multivariate perturbed neural network operators. Analysis and Applications, 2017, 15, 413-432.	2.2	2
132	Iterated convergence on Banach space valued functions of abstract g-fractional calculus. European Physical Journal: Special Topics, 2017, 226, 3667-3680.	2.6	2
133	Fuzzy lyengar-type inequalities. Computational and Applied Mathematics, 2019, 38, 1.	2.2	2
134	Weighted Fractional Iyengar Type Inequalities in the Caputo Direction. Mathematics, 2019, 7, 1119.	2.2	2
135	Quantitative multivariate complex Korovkin theory. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2020, $114, 1.$	1.2	2
136	Canavati Fractional Iyengar Inequalities. Studies in Computational Intelligence, 2020, , 29-43.	0.9	2
137	CONVERGENCE OF GENERALIZED SINGULAR INTEGRALS TO THE UNIT, MULTIVARIATE CASE. , 2000, , 1-8.		2
138	Multivariate Iyengar type inequalities for radial functions. Problemy Analiza, 2019, 26, 3-27.	0.3	2
139	Left Caputo Fractional L p -Landau-Type Inequalities. SpringerBriefs in Mathematics, 2011, , 85-91.	0.3	2
140	About Fractional Representation Formulae and Right Fractional Inequalities. Studies in Computational Intelligence, 2016, , 341-369.	0.9	2
141	Voronovskaya Type Asymptotic Expansions for Error Function Based Quasi-Interpolation Neural Network Operators. Revista Colombiana De Matematicas, 2015, 49, 171-192.	0.2	2
142	Convergence Analysis for Extended IterativeÂAlgorithms and Fractional andÂVector Calculus. Studies in Computational Intelligence, 2016, , 127-147.	0.9	2
143	The Left Multidimensional Riemann–Liouville Fractional Integral. Studies in Computational Intelligence, 2016, , 93-103.	0.9	2
144	Vectorial Fractional Approximation by Linear Operators. Progress in Fractional Differentiation and Applications, 2017, 3, 175-190.	0.6	2

#	Article	IF	CITATIONS
145	Complex Opial Inequalities. Studies in Computational Intelligence, 2020, , 393-399.	0.9	2
146	Generalized g -iterated fractional approximations by sublinear operators. Applicationes Mathematicae, 2020, 47, 273-291.	0.1	2
147	Fractional Left Local General M-Derivative. Studies in Computational Intelligence, 2020, , 501-510.	0.9	2
148	The rate of weak convergence of convex type positive finite measures. Journal of Mathematical Analysis and Applications, 1988, 136, 229-248.	1.0	1
149	Smooth rate of weak convergence of convex type positive finite measures. Journal of Mathematical Analysis and Applications, 1989, 141, 491-508.	1.0	1
150	Asymptotic expansions of the representation formulae for ($\langle i \rangle C \langle i \rangle \langle sub \rangle 0 \langle sub \rangle$) m-parameter operator semigroups $\langle sup \rangle 1 \langle sup \rangle \langle sup \rangle 2 \langle sup \rangle$. Numerical Functional Analysis and Optimization, 1995, 16, 1273-1291.	1.4	1
151	Some Shift-Invariant Integral Operators, Univariate Case, Revisited. Journal of Computational Analysis and Applications, 1999, 1, 3-23.	0.2	1
152	General Weighted Opial Inequalities for Linear Differential Operators. Journal of Mathematical Analysis and Applications, 1999, 239, 402-418.	1.0	1
153	Global smoothness preservation by multivariate singular integrals. Bulletin of the Australian Mathematical Society, 2000, 61, 489-506.	0.5	1
154	Partial shape preserving approximations by bivariate shepard operators. Computers and Mathematics With Applications, 2001, 42, 47-56.	2.7	1
155	Geometric and approximation properties of a complex Post–Widder operator in the unit disk. Applied Mathematics Letters, 2006, 19, 314-319.	2.7	1
156	Hilbert–Pachpatte type general integral inequalities. Applicable Analysis, 2007, 86, 945-961.	1.3	1
157	Statistical Approximation for Stochastic Processes. Stochastic Analysis and Applications, 2009, 27, 460-474.	1.5	1
158	Poincar \tilde{A} like inequalities for semigroups, cosine and sine operator functions. Semigroup Forum, 2009, 78, 54-67.	0.6	1
159	Distributional Taylor formula. Nonlinear Analysis: Theory, Methods & Applications, 2009, 70, 3195-3202.	1.1	1
160	Hilbert–Pachpatte-type inequalities for semigroups, cosine and sine operator functions. Applied Mathematics Letters, 2011, 24, 2172-2180.	2.7	1
161	Mixed Caputo fractional Landau inequalities. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74, 5440-5445.	1.1	1
162	Quantitative approximation by fractional smooth general singular operators. Applied Mathematics and Computation, 2012, 218, 6200-6213.	2.2	1

#	Article	IF	Citations
163	Reverse and Forward Fractional Integral Inequalities. , 2013, , 441-478.		1
164	Convergence for iterative methods on Banach spaces of a convergence structure with applications to fractional calculus. SeMA Journal, 2015, 71, 23-37.	2.0	1
165	Newton-Type Methods on Generalized Banach Spaces and Applications in Fractional Calculus. Algorithms, 2015, 8, 832-849.	2.1	1
166	Harmonic Multivariate Ostrowski and GrÃ $\frac{1}{4}$ ss Type Inequalities for Several Functions. Demonstratio Mathematica, 2015, 48, .	1.5	1
167	Fixed Point Techniques and Generalized Right Fractional Calculus. Studies in Computational Intelligence, 2016, , 57-74.	0.9	1
168	Fuzzy Fractional Approximations by Fuzzy Normalized Bell and Squashing Type Neural Networks. Studies in Computational Intelligence, 2016, , 193-214.	0.9	1
169	Fuzzy Fractional Neural Network Approximation Using Fuzzy Quasi-interpolation Operators. Studies in Computational Intelligence, 2016, , 215-249.	0.9	1
170	Multivariate and abstract approximation theory for Banach space valued functions. Demonstratio Mathematica, 2017, 50, 208-222.	1.5	1
171	Approximations by multivariate sublinear and Max-product operators under convexity. Demonstratio Mathematica, 2018, 51, 85-105.	1.5	1
172	Quantitative approximation by shift invariant multivariate sublinear-Choquet operators. Journal of Applied Analysis, 2018, 24, 115-126.	0.5	1
173	Multivariate and convex approximation by Choquet integrals. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2019, 113, 1379-1415.	1.2	1
174	General Ordinary and Fractional Approximation with Positive Sublinear Operators. Studies in Systems, Decision and Control, 2021, , 333-351.	1.0	1
175	High Order Approximation with Multivariate Generalized Gauss–Weierstrass Singular Integrals. Studies in Systems, Decision and Control, 2021, , 393-435.	1.0	1
176	Hilfer-Polya, Ï-Hilfer Ostrowski and Ï-Hilfer-Hilbert-Pachpatte Fractional Inequalities. Symmetry, 2021, 13, 463.	2.2	1
177	Approximation by multivariate generalized Poisson–Cauchy type singular integral operators. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2021, 115, 1.	1.2	1
178	Caputo Fractional Ostrowski–Type Inequalities. , 2009, , 615-633.		1
179	Ostrowski Type Inequalities Involving Sublinear Integrals. , 2019, , 325-355.		1
180	Multivariate Caputo left fractional Landau inequalities. Moroccan Journal of Pure and Applied Analysis, 2020, 6, 266-280.	0.4	1

#	Article	IF	CITATIONS
181	Complete Approximations by Multivariate Generalized Gauss-Weierstrass Singular Integrals. Moroccan Journal of Pure and Applied Analysis, 2021, 7, 134-172.	0.4	1
182	Refined rates of bias convergence for generalized L-Statistics in the i.i.d. case. Applicationes Mathematicae, 1999, 26, 437-455.	0.1	1
183	Multivariate Right Caputo Fractional Ostrowski Inequalities. SpringerBriefs in Mathematics, 2011, , 29-39.	0.3	1
184	Vectorial Inequalities for Integral Operators Involving Ratios of Functions and Convexity. Discontinuity, Nonlinearity, and Complexity, 2012, 1, 279-304.	0.2	1
185	Fractional Voronovskaya type asymptotic expansions for quasi-interpolation neural network operators. Cubo, 2012, 14, 71-83.	0.5	1
186	Voronovskaya type asymptotic expansions for multivariate quasi-interpolation neural network operators. Cubo, 2014, 16, 33-48.	0.5	1
187	Approximating Fixed Points and k-Fractional Calculus. Studies in Computational Intelligence, 2016, , 75-93.	0.9	1
188	Iterative Methods on Banach Spaces with a Convergence Structure and Fractional Calculus. Studies in Computational Intelligence, 2016, , 245-262.	0.9	1
189	Unified Convergence Analysis for Iterative Algorithms and Fractional Calculus. Studies in Computational Intelligence, 2016, , 107-125.	0.9	1
190	Fixed Point Results and Their Applications in Right Multivariate Fractional Calculus. Studies in Computational Intelligence, 2016 , , $17-30$.	0.9	1
191	Semi-local Convergence of Iterative Procedures and Their Applications in k-Multivariate Fractional Calculus. Studies in Computational Intelligence, 2016, , 31-50.	0.9	1
192	Fixed Point Results and Their Applications in Left Multivariate Fractional Calculus. Studies in Computational Intelligence, 2016, , 1-15.	0.9	1
193	Monotone Convergence of Iterative Schemes and Their Applications in Fractional Calculus. Studies in Computational Intelligence, 2016, , 71-81.	0.9	1
194	Ultra General Fractional Self Adjoint Operator Representation Formulae and Operator Poincar $\tilde{\mathbb{A}}$ and Sobolev and Other Basic Inequalities. Studies in Computational Intelligence, 2017, , 131-177.	0.9	1
195	Integer and Fractional Self Adjoint Operator Opial Inequalities. Studies in Computational Intelligence, 2017, , 97-110.	0.9	1
196	Arctangent Function Based Abstract Neural Network Approximation. Studies in Computational Intelligence, 2018, , 283-319.	0.9	1
197	Canavati Fractional Approximations Using Max-Product Operators. Studies in Systems, Decision and Control, 2018, , 95-118.	1.0	1
198	Approximation with Riemann-Liouville fractional derivatives. Studia Universitatis Babes-Bolyai Mathematica, 2019, 64, 357-365.	0.4	1

#	Article	IF	CITATIONS
199	Fractional Right Local General M-Derivative. Studies in Computational Intelligence, 2020, , 511-520.	0.9	1
200	Low Order Fractional Riemann–Liouville Inequalities on a Spherical Shell. Studies in Computational Intelligence, 2020, , 355-363.	0.9	1
201	Choquet integral analytic inequalities. Studia Universitatis Babes-Bolyai Mathematica, 2020, 65, 17-28.	0.4	1
202	Trigonometric Commutative Caputo Fractional Korovkin Approximation for Stochastic Processes. Studies in Systems, Decision and Control, 2021, , 441-458.	1.0	1
203	Advanced ordinary and fractional approximation by positive sublinear operators. Filomat, 2021, 35, 1899-1913.	0.5	1
204	A "K-Attainable―inequality related to the convergence of positive linear operators. Journal of Approximation Theory, 1985, 44, 380-383.	0.8	0
205	Rate of convergence of positive linear operators using an extended complete Tchebycheff system. Journal of Approximation Theory, 1989, 59, 125-149.	0.8	0
206	A discrete Stochastic Korovkin theorem. International Journal of Mathematics and Mathematical Sciences, 1991, 14, 679-682.	0.7	0
207	Bivariate constrained wavelet approximation. Journal of Computational and Applied Mathematics, 1994, 53, 1-9.	2.0	0
208	Preface: Concrete analysis. Computers and Mathematics With Applications, 1995, 30, xv.	2.7	0
209	A sharp error estimate for the numerical solution of multivariate Dirichlet problems. Journal of Computational and Applied Mathematics, 1996, 75, 215-229.	2.0	0
210	Lattice homomorphism inequalities for vector valued functions. Nonlinear Analysis: Theory, Methods & Applications, 1997, 30, 549-554.	1.1	0
211	A sharp error estimate for the numerical solution of multivariate dirichlet problem. Stochastic Analysis and Applications, 1998, 16, 403-422.	1.5	0
212	PROBABILISTIC OSTROWSKI TYPE INEQUALITIES. Stochastic Analysis and Applications, 2002, 20, 1177-1189.	1.5	0
213	Multidimensional weighted Opial inequalities. Applicable Analysis, 2006, 85, 579-591.	1.3	0
214	Grothendieck type inequalities. Applied Mathematics Letters, 2008, 21, 1286-1290.	2.7	0
215	High Order Statistical Fuzzy Korovkin Theory. Stochastic Analysis and Applications, 2009, 27, 543-554.	1.5	0
216	General theory of global smoothness and approximation by smooth singular operators. Mathematical and Computer Modelling, 2011, 54, 344-358.	2.0	0

#	Article	IF	CITATIONS
217	Multivariate inequalities based on Sobolev representations. Applicable Analysis, 2012, 91, 993-1017.	1.3	O
218	Vectorial fractional integral inequalities with convexity. Open Physics, 2013, 11, .	1.7	0
219	Lp-general approximations by multivariate singular integral operators. Demonstratio Mathematica, 2013, 46, .	1.5	0
220	Voronovskaya Type Asymptotic Expansions for Perturbed Neural Network Operators. New Mathematics and Natural Computation, 2015, 11, 35-69.	0.7	0
221	Generalized Caputo Type Fractional Inequalities. Advances in Intelligent Systems and Computing, 2016, , 423-454.	0.6	0
222	Fractional Integral Inequalities withÂConvexity. Studies in Computational Intelligence, 2016, , 439-475.	0.9	0
223	Fractional Polya Integral Inequality. Studies in Computational Intelligence, 2016, , 1-7.	0.9	0
224	Basic Fractional Integral Inequalities. Studies in Computational Intelligence, 2016, , 95-130.	0.9	0
225	A Unified Convergence Analysis for Some Iterative Algorithms with Applications to Fractional Calculus. International Journal of Applied and Computational Mathematics, 2017, 3, 323-332.	1.6	0
226	Generalized g-Fractional Calculus of Canavati-Type and Secant-Like Methods. International Journal of Applied and Computational Mathematics, 2017, 3, 1605-1617.	1.6	0
227	Generalized iterative procedures and their applications to Banach space valued functions in abstract fractional calculus. SeMA Journal, 2018, 75, 215-227.	2.0	0
228	Strong Right Abstract Fractional Calculus. Studies in Computational Intelligence, 2018, , 33-63.	0.9	0
229	Approximation by Shift Invariant Univariate Sublinear-Shilkret Operators. Cubo, 2018, 20, 1-16.	0.5	0
230	General multidimensional fractional lyengar type inequalities. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2019, 113, 2537-2573.	1.2	0
231	Approximation with Rates by Perturbed Kantorovich–Choquet Neural Network Operators. Studies in Systems, Decision and Control, 2019, , 23-54.	1.0	0
232	Caputo and Canavati Fractional Quantitative Approximation by Choquet Integrals. Studies in Systems, Decision and Control, 2019, , 193-212.	1.0	0
233	Fractional integral inequalities for generalized- $\$$ mathbf{m } $\$$ - $\$$ ((h_{1}^{p},h_{2}^{q});(eta) Tj ETQq1 1 0.7 Journal of Mathematics, 2020, 9, 231-243.	'84314 rgB' 0.9	T /Overlock 1 0
234	Multidimensional Caputo Left Side Fractional Landau Inequalities. Studies in Systems, Decision and Control, 2021, , 235-251.	1.0	0

#	Article	IF	CITATIONS
235	Iterated Generalized Right Side Fractional Landau Inequalities. Studies in Systems, Decision and Control, 2021, , 197-218.	1.0	O
236	Generalized Canavati Fractional Landau Inequalities. Studies in Systems, Decision and Control, 2021, , 119-131.	1.0	0
237	Abstract Fractional Landau Inequalities. Studies in Systems, Decision and Control, 2021, , 77-94.	1.0	0
238	Sequential Abstract Generalized Right Side Fractional Landau Inequalities. Constructive Mathematical Analysis, 0, , 274-290.	0.7	0
239	Sequential Left Abstract Fractional Landau Inequalities. Studies in Systems, Decision and Control, 2021, , 133-153.	1.0	0
240	General Fractional Landau Inequalities. Studies in Systems, Decision and Control, 2021, , 61-76.	1.0	0
241	Iterated Left Abstract Generalized Fractional Landau Inequalities. Studies in Systems, Decision and Control, 2021, , 155-176.	1.0	0
242	Multidimensional Left Canavati Fractional Landau Inequalities. Studies in Systems, Decision and Control, 2021, , 253-272.	1.0	0
243	Sequential General Right Side Fractional Landau Inequalities. Studies in Systems, Decision and Control, 2021, , 177-196.	1.0	0
244	Variable Order General Fractional Integral Inequalities. Studies in Systems, Decision and Control, 2021, , 1-14.	1.0	0
245	On global smoothness preservation in complex approximation. Annales Polonici Mathematici, 2002, 79, 199-205.	0.5	0
246	Opial-Type Inequalities for Balanced Fractional Derivatives. SpringerBriefs in Mathematics, 2011, , 1-19.	0.3	0
247	Univariate Mixed Fractional Ostrowski Inequalities. SpringerBriefs in Mathematics, 2011, , 41-49.	0.3	0
248	Multivariate Sigmoidal Neural Network Quantitative Approximation. Intelligent Systems Reference Library, 2011, , 67-88.	1.2	0
249	Representation formulae for (Câ,€) m-parameter operator semigroups. Annales Polonici Mathematici, 1996, 63, 247-272.	0.5	0
250	Spline left fractional monotone approximation involving left fractional differential operators. Cubo, 2015, 17, 65-73.	0.5	0
251	Multivariate Error Function Based Neural Network Operators Approximation. Studies in Computational Intelligence, 2016, , 375-407.	0.9	0
252	Multivariate Fuzzy-Random Quasi-interpolation Neural Networks Approximation. Studies in Computational Intelligence, 2016, , 299-320.	0.9	0

#	Article	IF	CITATIONS
253	Fractional Voronovskaya Type Asymptotic Expansions for Bell and Squashing Type Neural Networks. Studies in Computational Intelligence, 2016, , 143-152.	0.9	O
254	Fractional Approximation by Normalized Bell and Squashing Type Neural Networks. Studies in Computational Intelligence, 2016, , 119-141.	0.9	0
255	Multivariate Fuzzy-Random Perturbed Neural Network Approximations. Studies in Computational Intelligence, 2016, , 687-710.	0.9	0
256	Multivariate Fuzzy-Random Normalized Neural Network Approximation. Studies in Computational Intelligence, 2016, , 165-191.	0.9	0
257	High Order Multivariate Fuzzy Approximation Using Quasi-interpolation Neural Networks. Studies in Computational Intelligence, 2016, , 267-297.	0.9	0
258	Voronovskaya Type Asymptotic Expansions for Multivariate Quasi-interpolation Neural Networks. Studies in Computational Intelligence, 2016, , 103-118.	0.9	0
259	Fractional Voronovskaya Type Asymptotic Expansions for Quasi-interpolation Neural Networks. Studies in Computational Intelligence, 2016, , 89-101.	0.9	0
260	Harmonic Multivariate Ostrowski and GrÃ $\frac{1}{4}$ ss Inequalities Using Several Functions. Studies in Computational Intelligence, 2016, , 131-158.	0.9	0
261	Further Interpretation of Some Fractional Ostrowski and $Gr\tilde{A}^{1}/4$ ss Type Inequalities. Studies in Computational Intelligence, 2016, , 175-187.	0.9	0
262	Balanced Canavati Fractional Opial Inequalities. Studies in Computational Intelligence, 2016, , 57-66.	0.9	0
263	Vectorial Inequalities for Integral Operators Involving Ratios of Functions Using Convexity. Studies in Computational Intelligence, 2016, , 477-513.	0.9	0
264	Multidimensional Ostrowski Type Inequalities for Banach Space Valued Functions. Studies in Computational Intelligence, 2016, , 291-340.	0.9	0
265	Univariate Fractional Polya Integral Inequalities. Studies in Computational Intelligence, 2016, , 9-21.	0.9	0
266	About Separating Rational L_{p} L p Inequalities for Integral Operators. Studies in Computational Intelligence, 2016, , 549-583.	0.9	0
267	About Vectorial Splitting Rational L_{p} L p Inequalities for Integral Operators. Studies in Computational Intelligence, 2016, , 515-548.	0.9	0
268	Iterative Algorithms and Left-Right Caputo Fractional Derivatives. Studies in Computational Intelligence, 2016, , 231-243.	0.9	0
269	Newton-Like Methods on Generalized Banach Spaces and Fractional Calculus. Studies in Computational Intelligence, 2016, , 1-21.	0.9	O
270	Newton-Like Procedures and Their Applications in Multivariate Fractional Calculus. Studies in Computational Intelligence, 2016, , 51-62.	0.9	0

#	Article	IF	CITATIONS
271	Basic Iterated Fractional Inequalities. Advances in Intelligent Systems and Computing, 2016, , 455-502.	0.6	O
272	Implicit Iterative Algorithms and Their Applications in Multivariate Calculus. Studies in Computational Intelligence, 2016, , 63-70.	0.9	0
273	Generalized Iterated Fractional Representation Formulae and Inequalities. Springer Proceedings in Mathematics and Statistics, 2016, , 373-396.	0.2	0
274	On the convergence of secant-like algorithms with applications to generalized fractional calculus. Applicationes Mathematicae, 2016, 43, 191-206.	0.1	0
275	Fractional Self Adjoint Operator Poincar \tilde{A} \otimes and Sobolev Inequalities. Studies in Computational Intelligence, 2017, , 61-80.	0.9	0
276	A convergence analysis for extended iterative algorithms with applications to fractional and vector calculus. Applicationes Mathematicae, 2017, 44, 197-214.	0.1	0
277	About a Fractional Means Inequality. Studies in Computational Intelligence, 2017, , 221-224.	0.9	0
278	Self adjoint operator harmonic polynomials induced Chebyshev-Gruss inequalities. Studia Universitatis Babes-Bolyai Mathematica, 2017, 62, 39-56.	0.4	0
279	Vector Abstract Fractional Korovkin Approximation. Studies in Computational Intelligence, 2018, , 147-173.	0.9	0
280	Vectorial Abstract Fractional Approximation Using Linear Operators. Studies in Computational Intelligence, 2018, , 211-233.	0.9	0
281	Abstract Fractional Trigonometric Korovkin Approximation. Studies in Computational Intelligence, 2018, , 235-259.	0.9	0
282	Vector Fractional Trigonometric Korovkin Approximation. Progress in Fractional Differentiation and Applications, 2017, 3, 237-254.	0.6	0
283	Approximate Solutions of Equations in Abstract g-Fractional Calculus. Studies in Systems, Decision and Control, 2018, , 121-137.	1.0	0
284	Fractional Ostrowski–Sugeno Type Fuzzy Integral Univariate Inequalities. Studies in Systems, Decision and Control, 2019, , 317-333.	1.0	0
285	Approximation with Rates by Shift Invariant Multivariate Sublinear-Choquet Operators. Studies in Systems, Decision and Control, 2019, , 73-91.	1.0	0
286	Multivariate and Convex Quantitative Approximation by Choquet Integrals. Studies in Systems, Decision and Control, 2019, , 149-192.	1.0	0
287	Approximation with Rates by Kantorovich–Choquet Quasi-interpolation Neural Network Operators. Studies in Systems, Decision and Control, 2019, , 1-21.	1.0	0
288	Selfadjoint operator Chebyshev–Grüss type inequalities. Applicationes Mathematicae, 2019, 46, 99-114.	0.1	0

#	Article	lF	CITATIONS
289	Local Fractional Inequalities. , 2019, , 435-468.		O
290	Ostrowski-Sugeno fuzzy inequalities. Cubo, 2019, 21, 29-38.	0.5	0
291	General Multidimensional Fractional Iyengar Inequalities. Studies in Computational Intelligence, 2020, , 143-187.	0.9	0
292	General Multivariate lyengar Inequalities. Studies in Computational Intelligence, 2020, , 45-66.	0.9	0
293	Negative Domain Local Fractional Inequalities. Studies in Computational Intelligence, 2020, , 303-316.	0.9	0
294	Multidimensional Fractional Iyengar Inequalities for Radial Functions. Studies in Computational Intelligence, 2020, , 91-142.	0.9	0
295	Multivariate Iyengar Inequalities for Radial Functions. Studies in Computational Intelligence, 2020, , 67-89.	0.9	0
296	Choquet Integral Analytical Type Inequalities. Studies in Computational Intelligence, 2020, , 283-296.	0.9	0
297	lyengar Fuzzy Inequalities. Studies in Computational Intelligence, 2020, , 273-282.	0.9	0
298	Principles of Stochastic Caputo Fractional Calculus with Fractional Approximation of Stochastic Processes. Studies in Systems, Decision and Control, 2021, , 283-321.	1.0	0
299	Trigonometric Caputo Fractional Approximation of Stochastic Processes. Studies in Systems, Decision and Control, 2021, , 323-353.	1.0	0
300	Commutative Caputo Fractional Korovkin Approximation for Stochastic Processes. Studies in Systems, Decision and Control, 2021, , 423-440.	1.0	0
301	Generalized Canavati g-Fractional Iyengar and Ostrowski Inequalities. Studies in Systems, Decision and Control, 2021, , 69-89.	1.0	0
302	Generalized Canavati g-Fractional Polya Inequalities. Studies in Systems, Decision and Control, 2021, , 91-111.	1.0	0
303	Caputo Generalized \$\$psi \$\$-Fractional Integral Type Inequalities. Studies in Systems, Decision and Control, 2021, , 113-133.	1.0	0
304	Advanced Hilfer Fractional Opial Inequalities. Studies in Systems, Decision and Control, 2022, , 341-363.	1.0	0
305	Exotic Fractional Integral Inequalities. Studies in Systems, Decision and Control, 2022, , 365-391.	1.0	0
306	Fuzzy Fractional Calculus. Studies in Systems, Decision and Control, 2022, , 393-417.	1.0	0

#	Article	IF	CITATIONS
307	Basic Abstract Fractional Monotone Approximation. Studies in Systems, Decision and Control, 2022, , 1-22.	1.0	O
308	Vectorial Prabhakar Hardy Type Generalized Fractional Inequalities under Convexity. Journal of Advances in Applied & Computational Mathematics, 0, 8, 34-74.	0.1	0
309	Foundations of generalized Prabhakar-Hilfer fractional calculus with applications. Cubo, 2021, 23, 423-440.	0.5	О
310	p-Schatten norm sequential generalized fractional Ostrowski and Grýss type inequalities for several functions. Revista De La Real Academia De Ciencias Exactas, Fisicas Y Naturales - Serie A: Matematicas, 2022, 116, .	1.2	0