Siavosh Mahboobi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4206570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inhibitors of class I HDACs and of FLT3 combine synergistically against leukemia cells with mutant FLT3. Archives of Toxicology, 2022, 96, 177-193.	1.9	10
2	A novel Cereblon E3 ligase modulator with antitumor activity in gastrointestinal cancer. Bioorganic Chemistry, 2022, 119, 105505.	2.0	13
3	Identification of a highly efficient dual type I/II FMS-like tyrosine kinase inhibitor that disrupts the growth of leukemic cells. Cell Chemical Biology, 2022, 29, 398-411.e4.	2.5	9
4	A series of novel aryl-methanone derivatives as inhibitors of FMS-like tyrosine kinase 3 (FLT3) in FLT3-ITD-positive acute myeloid leukemia. European Journal of Medicinal Chemistry, 2020, 193, 112232.	2.6	8
5	Enantioselective synthesis and biological investigation of tetrahydroâ€Î²â€carbolineâ€based HDAC6 inhibitors with improved solubility. Archiv Der Pharmazie, 2019, 352, e1900026.	2.1	4
6	Human platelet lysate as validated replacement for animal serum to assess chemosensitivity. ALTEX: Alternatives To Animal Experimentation, 2019, 36, 277-288.	0.9	12
7	Design and biological evaluation of tetrahydro-β-carboline derivatives as highly potent histone deacetylase 6 (HDAC6) inhibitors. European Journal of Medicinal Chemistry, 2018, 152, 329-357.	2.6	34
8	Marbostat-100 Defines a New Class of Potent and Selective Antiinflammatory and Antirheumatic Histone Deacetylase 6 Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 3454-3477.	2.9	56
9	Dual role of HDAC10 in lysosomal exocytosis and DNA repair promotes neuroblastoma chemoresistance. Scientific Reports, 2018, 8, 10039.	1.6	36
10	HSP90 is necessary for the ACK1-dependent phosphorylation of STAT1 and STAT3. Cellular Signalling, 2017, 39, 9-17.	1.7	32
11	Class I histone deacetylases regulate p53/NF-κB crosstalk in cancer cells. Cellular Signalling, 2017, 29, 218-225.	1.7	41
12	Generation and Assessment of Fusions Between HDACi and TKi. Methods in Molecular Biology, 2017, 1510, 405-412.	0.4	6
13	Analysis of the interplay between all-trans retinoic acid and histone deacetylase inhibitors in leukemic cells. Archives of Toxicology, 2017, 91, 2191-2208.	1.9	26
14	How to Distinguish Between the Activity of HDAC1-3 and HDAC6 with Western Blot. Methods in Molecular Biology, 2017, 1510, 355-364.	0.4	21
15	Synergistic killing of FLT3ITD-positive AML cells by combined inhibition of tyrosine-kinase activity and N-glycosylation. Oncotarget, 2017, 8, 26613-26624.	0.8	18
16	Concepts to Target MYC in Pancreatic Cancer. Molecular Cancer Therapeutics, 2016, 15, 1792-1798.	1.9	64
17	Drugging the HDAC6–HSP90 interplay in malignant cells. Trends in Pharmacological Sciences, 2014, 35, 501-509.	4.0	110
18	Chimerically designed HDAC- and tyrosine kinase inhibitors. A series of erlotinib hybrids as dual-selective inhibitors of EGER_HER2 and histore deacetylases_MedChemComm_2012_3_829	3.5	28

SIAVOSH МАНВООВІ

#	Article	IF	CITATIONS
19	Novel inhibitors of epidermal growth factor receptor: (4-(Arylamino)-7H-pyrrolo[2,3-d]pyrimidin-6-yl)(1H-indol-2-yl)methanones and (1H-indol-2-yl)(4-(phenylamino)thieno[2,3-d]pyrimidin-6-yl)methanones. Bioorganic and Medicinal Chemistry, 2012, 20, 125-136.	1.4	25
20	Chimeric tyrosine kinase-HDAC inhibitors as antiproliferative agents. Anti-Cancer Drugs, 2010, 21, 759-765.	0.7	6
21	Stent-based release of a selective PDGF-receptor blocker from the bis-indolylmethanon class inhibits restenosis in the rabbit animal model. Vascular Pharmacology, 2010, 52, 55-62.	1.0	15
22	Novel Chimeric Histone Deacetylase Inhibitors: A Series of Lapatinib Hybrides as Potent Inhibitors of Epidermal Growth Factor Receptor (EGFR), Human Epidermal Growth Factor Receptor 2 (HER2), and Histone Deacetylase Activity. Journal of Medicinal Chemistry, 2010, 53, 8546-8555.	2.9	87
23	Bis(1 <i>H</i> â€indolâ€2â€yl)methanones are effective inhibitors of FLT3â€ITD tyrosine kinase and partially overcome resistance to PKC412A <i>in vitro</i> . British Journal of Haematology, 2009, 144, 865-874.	1.2	11
24	Design of Chimeric Histone Deacetylase- and Tyrosine Kinase-Inhibitors: A Series of Imatinib Hybrides as Potent Inhibitors of Wild-Type and Mutant BCR-ABL, PDGF-Rβ, and Histone Deacetylases. Journal of Medicinal Chemistry, 2009, 52, 2265-2279.	2.9	83
25	2-Arylamino-4-Amino-5-Aroylthiazoles. "One-Pot―Synthesis and Biological Evaluation of a New Class of Inhibitors of Tubulin Polymerization. Journal of Medicinal Chemistry, 2009, 52, 5551-5555.	2.9	53
26	Antibacterial activity of a novel series of 3-bromo-4-(1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrroledione derivatives – An extended structure–activity relationship study. European Journal of Medicinal Chemistry, 2008, 43, 633-656.	2.6	16
27	Inhibition of PDGFR tyrosine kinase activity by a series of novel N-(3-(4-(pyridin-3-yl)-1H-imidazol-2-ylamino)phenyl)amides – A SAR study on the bioisosterism of pyrimidine and imidazole. European Journal of Medicinal Chemistry, 2008, 43, 1444-1453.	2.6	8
28	2-Aroylindoles and 2-Aroylbenzofurans withN-Hydroxyacrylamide Substructures as a Novel Series of Rationally Designed Histone Deacetylase Inhibitorsâ€. Journal of Medicinal Chemistry, 2007, 50, 4405-4418.	2.9	56
29	Inhibition of FLT3 and PDGFR tyrosine kinase activity by bis(benzo[b]furan-2-yl)methanones. Bioorganic and Medicinal Chemistry, 2007, 15, 2187-2197.	1.4	29
30	Novel Bis(1H-indol-2-yl)methanones as Potent Inhibitors of FLT3 and Platelet-Derived Growth Factor Receptor Tyrosine Kinase. Journal of Medicinal Chemistry, 2006, 49, 3101-3115.	2.9	46
31	[4-(Imidazol-1-yl)thiazol-2-yl]phenylamines. A Novel Class of Highly Potent Colchicine Site Binding Tubulin Inhibitors: Synthesis and Cytotoxic Activity on Selected Human Cancer Cell Lines. Journal of Medicinal Chemistry, 2006, 49, 5769-5776.	2.9	28
32	3-Bromo-4-(1H-3-indolyl)-2,5-dihydro-1H-2,5-pyrroledione derivatives asÂnew lead compounds forÂantibacterially active substances. European Journal of Medicinal Chemistry, 2006, 41, 176-191.	2.6	41
33	Synthesis and cytotoxic activity of 2-acyl-1H-indole-4,7-diones on human cancer cell lines. European Journal of Medicinal Chemistry, 2005, 40, 85-92.	2.6	15
34	Synthesis and Cytotoxic Activity of 2-Acyl-1H-indole-4,7-diones on Human Cancer Cell Lines ChemInform, 2005, 36, no.	0.1	0
35	Synthesis of Naturally Occurring Pyrazine and Imidazole Alkaloids from Botryllus LeachiRID=?a?ID=?a?â€,Dedicated to Prof. G . MA⊄l on the occasion of his 75 th birthday. Monatshefte FA1⁄4r Chemie, 2004, 135, 333-342.	0.9	17
36	The tyrosine kinase FRK/RAK participates in cytokine-induced islet cell cytotoxicity. Biochemical Journal, 2004, 382, 261-268.	1.7	18

SIAVOSH МАНВООВІ

#	Article	IF	CITATIONS
37	A Single Amino Acid Exchange Inverts Susceptibility of Related Receptor Tyrosine Kinases for the ATP Site Inhibitor STI-571. Journal of Biological Chemistry, 2003, 278, 5148-5155.	1.6	58
38	Bis(1H-2-indolyl)methanones as a Novel Class of Inhibitors of the Platelet-Derived Growth Factor Receptor Kinase. Journal of Medicinal Chemistry, 2002, 45, 1002-1018.	2.9	74
39	2-aroylindoles, a novel class of potent, orally active small molecule tubulin inhibitors. Cancer Research, 2002, 62, 3113-9.	0.4	36
40	Synthetic 2-Aroylindole Derivatives as a New Class of Potent Tubulin-Inhibitory, Antimitotic Agents‖. Journal of Medicinal Chemistry, 2001, 44, 4535-4553.	2.9	103
41	Synthesis of bis(indolylmaleimide) macrocycles. Journal of Heterocyclic Chemistry, 2000, 37, 307-329.	1.4	7
42	Synthesis of pyrrolo[3′,4′:2,3]azepino[4,5,6â€ <i>cd</i>]indoleâ€8,10â€diones. Journal of Heterocyclic Chemistry, 2000, 37, 1177-1185.	1.4	6
43	Synthesis of the Racemates of the b-Carboline Alkaloid Chrysotricine and its Diastereomer. Monatshefte Für Chemie, 2000, 131, 0383-0392.	0.9	6
44	Synthesis of Enantiomerically Pure (â^')-(S)-Brevicolline. Journal of Natural Products, 1999, 62, 577-579.	1.5	15
45	Synthesis Of 2'-Amino-3'-Methoxyflavone (Pd 98059). Synthetic Communications, 1999, 29, 1645-1652.	1.1	5
46	Homoarcyriaflavin: Synthesis of Ring-Expanded Arcyriaflavin Analoguesâ€. Journal of Organic Chemistry, 1999, 64, 8130-8137.	1.7	29
47	Syntheses of (RS)- and (S)-(â^')-Nazlinin and (RS)- and (+)-6-Azacyclodeca[5,4-b]indol-1-amine. Archiv Der Pharmazie, 1995, 328, 371-376.	2.1	10
48	Woodinine and its Stereomers - Absolute Configuration. Archiv Der Pharmazie, 1993, 326, 33-37.	2.1	5
49	Enantioselective Hydrosilylation and Hydrogenation of Alkaloid Precursors. Archiv Der Pharmazie, 1988, 321, 73-76.	2.1	17
50	Enantioselective Synthesis of Some Nicotiana Alkaloids. Archiv Der Pharmazie, 1988, 321, 175-177.	2.1	13
51	Preparation and GC-MS-Identification of N-Methyl-Δ3-pyrroline. Archiv Der Pharmazie, 1988, 321, 423-424.	2.1	5