Wu Qiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4206559/publications.pdf Version: 2024-02-01

		840776	
13	1,135	11	13
papers	citations	h-index	g-index
13	13	13	825
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A Layer-by-Layer Architecture for Printable Organic Solar Cells Overcoming the Scaling Lag of Module Efficiency. Joule, 2020, 4, 407-419.	24.0	272
2	Controlling Molecular Mass of Low-Band-Gap Polymer Acceptors for High-Performance All-Polymer Solar Cells. Joule, 2020, 4, 1070-1086.	24.0	236
3	A multi-objective optimization-based layer-by-layer blade-coating approach for organic solar cells: rational control of vertical stratification for high performance. Energy and Environmental Science, 2019, 12, 3118-3132.	30.8	142
4	Multiâ€ s elenophene ontaining Narrow Bandgap Polymer Acceptors for Allâ€Polymer Solar Cells with over 15 % Efficiency and High Reproducibility. Angewandte Chemie - International Edition, 2021, 60, 15935-15943.	13.8	125
5	Highâ€Performance Allâ€Polymer Solar Cells with a Pseudoâ€Bilayer Configuration Enabled by a Stepwise Optimization Strategy. Advanced Functional Materials, 2021, 31, 2010411.	14.9	99
6	Slot-die printed non-fullerene organic solar cells with the highest efficiency of 12.9% for low-cost PV-driven water splitting. Nano Energy, 2019, 61, 559-566.	16.0	65
7	High-performance all-polymer solar cells with only 0.47 eV energy loss. Science China Chemistry, 2020, 63, 1449-1460.	8.2	62
8	Tailoring polymer acceptors by electron linkers for achieving efficient and stable all-polymer solar cells. National Science Review, 2022, 9, nwab151.	9.5	41
9	Baseplate Temperatureâ€Dependent Vertical Composition Gradient in Pseudoâ€Bilayer Films for Printing Nonâ€Fullerene Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2102135.	19.5	33
10	Simultaneous Enhanced Device Efficiency and Color Neutrality in Semitransparent Organic Photovoltaics Employing a Synergy of Ternary Strategy and Optical Engineering. Advanced Functional Materials, 2022, 32, .	14.9	30
11	Highly Efficient Allâ€Polymer Solar Cells Enabled by Random Ternary Copolymer Acceptors with High Tolerance on Molar Ratios. Solar Rrl, 2020, 4, 2000409.	5.8	15
12	Understanding the molecular mechanisms of the differences in the efficiency and stability of all-polymer solar cells. Journal of Materials Chemistry C, 2022, 10, 1850-1861.	5.5	9
13	Multiâ€Selenopheneâ€Containing Narrow Bandgap Polymer Acceptors for Allâ€Polymer Solar Cells with over 15 % Efficiency and High Reproducibility. Angewandte Chemie, 2021, 133, 16071-16079.	2.0	6