Teruhisa Tsuchimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4206040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stepwise Suzukiâ^'Miyaura Crossâ€Coupling of Triborylalkenes Derived from Alkynylâ^'B(dan)s: Regioselective and Flexible Synthesis of Tetrasubstituted Alkenes. Advanced Synthesis and Catalysis, 2021, 363, 2427-2442.	4.3	10
2	In(ONf)3-catalyzed 7-membered carbon-ring-forming annulation of heteroarylindoles with $\hat{I}_{\pm}, \hat{I}_{-}$ -unsaturated carbonyl compounds. Organic Chemistry Frontiers, 2021, 8, 2882-2892.	4.5	6
3	Direct Suzuki–Miyaura Coupling with Naphthalene-1,8-diaminato (dan)-Substituted Organoborons. ACS Catalysis, 2020, 10, 346-351.	11.2	47
4	Front Cover Picture: Zinc/Indium Bimetallic Lewis Acid Relay Catalysis for Dehydrogenative Silylation/Hydrosilylation Reaction of Terminal Alkynes with Bis(hydrosilane)s (Adv. Synth. Catal.) Tj ETQq0 0 0	rgBT4/Øverl	ock010 Tf 50
5	Zinc/Indium Bimetallic Lewis Acid Relay Catalysis for Dehydrogenative Silylation/Hydrosilylation Reaction of Terminal Alkynes with Bis(hydrosilane)s. Advanced Synthesis and Catalysis, 2020, 362, 4098-4108.	4.3	12
6	A Drastic Effect of TEMPO in Zinc atalyzed Stannylation of Terminal Alkynes with Hydrostannanes via Dehydrogenation and Oxidative Dehydrogenation. Advanced Synthesis and Catalysis, 2019, 361, 4314-4323.	4.3	12
7	Front Cover Picture: Alkynylâ~'B(dan)s in Various Palladiumâ€Catalyzed Carbonâ~'Carbon Bondâ€Forming Reactions Leading to Internal Alkynes, 1,4â€Enynes, Ynones, and Multiply Substituted Alkenes (Adv. Synth.) Tj∣	ETQ q .B1 0.'	78 4 314 rgBT
8	Alkylation of Terminal Alkynes under Zinc Lewis Acid Catalysis and Its Mechanistic Studies. Advanced Synthesis and Catalysis, 2019, 361, 2825-2831.	4.3	3
9	Alkynylâ^'B(dan)s in Various Palladiumâ€Catalyzed Carbonâ^'Carbon Bondâ€Forming Reactions Leading to Internal Alkynes, 1,4â€Enynes, Ynones, and Multiply Substituted Alkenes. Advanced Synthesis and Catalysis, 2019, 361, 1815-1834.	4.3	31
10	A Heteroarylamine Library: Indium atalyzed Nucleophilic Aromatic Substitution of Alkoxyheteroarenes with Amines. Advanced Synthesis and Catalysis, 2018, 360, 1159-1181.	4.3	18
11	Indium-Catalyzed Annulation of o-Acylanilines with Alkoxyheteroarenes: Synthesis of Heteroaryl[b]quinolines and Subsequent Transformation to Cryptolepine Derivatives. Molecules, 2018, 23, 838.	3.8	20
12	Naked d-orbital in a centrochiral Ni(II) complex as a catalyst for asymmetric [3+2] cycloaddition. Nature Communications, 2017, 8, 14875.	12.8	38
13	Indium-Catalyzed Regioselective β-Alkylation of Pyrroles with Carbonyl Compounds and Hydrosilanes and Its Application to Construction of a Quaternary Carbon Center with a β-Pyrrolyl Group. Journal of Organic Chemistry, 2017, 82, 5178-5197.	3.2	23
14	Zinc-Catalyzed Dehydrogenative Silylation of Indoles. Organometallics, 2017, 36, 3234-3249.	2.3	23
15	Easy Access to a Library of Alkylindoles: Reductive Alkylation of Indoles with Carbonyl Compounds and Hydrosilanes under Indium Catalysis. Advanced Synthesis and Catalysis, 2016, 358, 1136-1149.	4.3	25
16	Indium atalyzed Formal Nâ€Arylation and Nâ€Alkylation of Pyrroles with Amines. Advanced Synthesis and Catalysis, 2016, 358, 2895-2902.	4.3	13
17	Alkynylboranes: A Practical Approach by Zinc atalyzed Dehydrogenative Coupling of Terminal Alkynes with 1,8â€Naphthalenediaminatoborane. Advanced Synthesis and Catalysis, 2015, 357, 77-82.	4.3	72
18	Zinc atalyzed Direct Cyanation of Indoles and Pyrroles: Nitromethane as a Source of a Cyano Group. Advanced Synthesis and Catalysis, 2014, 356, 347-352.	4.3	41

TERUHISA TSUCHIMOTO

#	Article	IF	CITATIONS
19	RE12 derivatives displaying Vaccinia H1-related phosphatase (VHR) inhibition in the presence of detergent and their anti-proliferative activity against HeLa cells. Bioorganic and Medicinal Chemistry, 2014, 22, 2771-2782.	3.0	6
20	Metalâ€Free Regioselective βâ€Alkylation of Pyrroles with Carbonyl Compounds and Hydrosilanes: Use of a BrÃ,nsted Acid as a Catalyst. Advanced Synthesis and Catalysis, 2014, 356, 3881-3891.	4.3	14
21	Indium-catalyzed annulation of 3-aryl- and 3-heteroarylindoles with propargyl ethers: synthesis and photoluminescent properties of aryl- and heteroaryl[c]carbazoles. Organic and Biomolecular Chemistry, 2013, 11, 1456.	2.8	26
22	Indium-catalyzed Annulation of Indoles with Ethyl (2-Ethynylaryl)methyl Carbonates: Synthesis and Photoluminescent Properties of Aryl- and Heteroaryl[<i>b</i>]carbazoles. Chemistry Letters, 2013, 42, 1170-1172.	1.3	14
23	Dehydrogenative Silylation of Terminal Alkynes with Hydrosilanes under Zinc–Pyridine Catalysis. Advanced Synthesis and Catalysis, 2012, 354, 2959-2964.	4.3	51
24	Zincâ€Catalyzed Dehydrogenative Nâ€Silylation of Indoles with Hydrosilanes. Chemistry - A European Journal, 2012, 18, 9500-9504.	3.3	48
25	Reductive Alkylation of Indoles with Alkynes and Hydrosilanes under Indium Catalysis. Organic Letters, 2011, 13, 912-915.	4.6	50
26	Catalytic Asymmetric αâ€Chlorination of 3â€Acyloxazolidinâ€2â€one with a Trinary Catalytic System. European Journal of Organic Chemistry, 2011, 2011, 3675-3678.	2.4	27
27	Indiumâ€Catalyzed Heteroaryl–Heteroaryl Bond Formation through Nucleophilic Aromatic Substitution. Angewandte Chemie - International Edition, 2011, 50, 1375-1379.	13.8	40
28	Selective Synthesis of βâ€Alkylpyrroles. Chemistry - A European Journal, 2011, 17, 4064-4075.	3.3	26
29	Exclusive Synthesis of βâ€Alkylpyrroles under Indium Catalysis: Carbonyl Compounds as Sources of Alkyl Groups. Chemistry - A European Journal, 2010, 16, 8975-8979.	3.3	26
30	Synthesis of Methanes Having Four Different Carbon Substituents Utilizing Indium atalyzed Cleavage of Carbon–Pyrrolyl Bonds. European Journal of Organic Chemistry, 2009, 2009, 2437-2440.	2.4	19
31	Indium-Catalyzed Reductive Alkylation of Pyrroles with Alkynes and Hydrosilanes: Selective Synthesis of β-Alkylpyrroles. Organic Letters, 2009, 11, 2129-2132.	4.6	41
32	Lewis Acid Catalyzed Addition of Pyrazoles to Alkynes: Selective Synthesis of Double and Single Addition Products. European Journal of Organic Chemistry, 2008, 2008, 4035-4040.	2.4	33
33	Indium-Catalyzed Annulation of 2-Aryl- and 2-Heteroarylindoles with Propargyl Ethers: Concise Synthesis and Photophysical Properties of Diverse Aryl- and Heteroaryl-Annulated[<i>a</i>]carbazoles. Journal of the American Chemical Society, 2008, 130, 15823-15835.	13.7	188
34	Stereochemistry in Lewis acid-catalyzed silylation of alcohols, silanols, and methoxysilanes with optically active methyl(1-naphthyl)phenylsilane. Silicon Chemistry, 2007, 3, 243-249.	0.8	43
35	Nickel-Catalyzed Addition of Organoboronates to 1,2-Dienes and the Corresponding Three-Component Reaction with an Alkyne. Advanced Synthesis and Catalysis, 2006, 348, 837-840.	4.3	29
36	Studies on Carbon-Carbon Bond Forming Reactions Utilizing Activation of Unsaturated Hydrocarbons and Heteroaromatic Compounds by Metal Sulfonate Catalysts. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2006, 64, 752-765.	0.1	9

Teruhisa Tsuchimoto

#	Article	IF	CITATIONS
37	Easy Access to Aryl- and Heteroaryl-Annulated[a]carbazoles by the Indium-Catalyzed Reaction of 2-Arylindoles with Propargyl Ethers. Angewandte Chemie - International Edition, 2005, 44, 1336-1340.	13.8	77
38	Zirconium Triflate Catalyzed Direct Coupling Reaction of Lactams with Heterocyclic Arenes under Atmospheric Oxygen. Angewandte Chemie - International Edition, 2004, 43, 4231-4233.	13.8	54
39	Palladium-catalysed dimerization of vinylarenes using indium triflate as an effective co-catalyst. Chemical Communications, 2003, , 852-853.	4.1	80
40	Indium triflate-catalysed double addition of heterocyclic arenes to alkynes. Chemical Communications, 2003, , 2454.	4.1	75
41	Nickel-catalysed hydroarylation of alkynes using arylboron compounds: selective synthesis of multisubstituted arylalkenes and aryldienes. Chemical Communications, 2001, , 2688-2689.	4.1	90
42	Transition metal-catalysed acylation of $\hat{I}\pm, \hat{I}^2$ -unsaturated carbonyl compounds with acylstannanes. Chemical Communications, 2001, , 1926-1927.	4.1	24
43	Friedel–Crafts alkenylation of arenes using alkynes catalysed by metal trifluoromethanesulfonates. Chemical Communications, 2000, , 1573-1574.	4.1	156
44	Scandium(III) Triflate-Catalyzed Friedelâ^'Crafts Alkylation Reactions. Journal of Organic Chemistry, 1997, 62, 6997-7005.	3.2	189