
Dario Siniscalco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4205302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of Peripheral Blood Mononuclear Cell Extraction from Small Volume of Blood Samples: Potential Implications for Children-Related Diseases. Methods and Protocols, 2022, 5, 20.	2.0	3
2	Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It?. International Journal of Molecular Sciences, 2022, 23, 3033.	4.1	42
3	Editorial: Antioxidants in Autism Spectrum Disorders. Frontiers in Psychiatry, 2022, 13, 889865.	2.6	0
4	The 2021 yearbook of Neurorestoratology. Journal of Neurorestoratology, 2022, 10, 100008.	2.5	20
5	Interferon beta 1a (Rebif®) in relapsing remitting multiple sclerosis. Drug Development Research, 2021, 82, 707-715.	2.9	1
6	Endocannabinoid System Dysregulation from Acetaminophen Use May Lead to Autism Spectrum Disorder: Could Cannabinoid Treatment Be Efficacious?. Molecules, 2021, 26, 1845.	3.8	5
7	SARS-CoV-2 Infection and Risk Management in Multiple Sclerosis. Diseases (Basel, Switzerland), 2021, 9, 32.	2.5	5
8	Impact of SARS-CoV-2 on neuropsychiatric disorders. World Journal of Psychiatry, 2021, 11, 347-354.	2.7	22
9	The 2020 Yearbook of Neurorestoratology. Journal of Neurorestoratology, 2021, 9, 1-12.	2.5	25
10	Altered gut microbiota and endocannabinoid system tone in vitamin D deficiency-mediated chronic pain. Brain, Behavior, and Immunity, 2020, 85, 128-141.	4.1	76
11	Stem Cell-Derived Exosomes in Autism Spectrum Disorder. International Journal of Environmental Research and Public Health, 2020, 17, 944.	2.6	13
12	Obesity is associated with senescence of mesenchymal stromal cells derived from bone marrow, subcutaneous and visceral fat of young mice. Aging, 2020, 12, 12609-12621.	3.1	31
13	Speech-Stimulating Substances in Autism Spectrum Disorders. Behavioral Sciences (Basel,) Tj ETQq1 1 0.7843	14 rgBT /Ov 2.1	verlgck 10 Ti
14	De novo Blood Biomarkers in Autism: Autoantibodies against Neuronal and Glial Proteins. Behavioral Sciences (Basel, Switzerland), 2019, 9, 47.	2.1	21
15	Endocannabinoid system involvement in autism spectrum disorder: An overview with potential therapeutic applications. AIMS Molecular Science, 2019, 6, 27-37.	0.5	10
16	Cellular therapy for autism spectrum disorder: a step forward to the optimal treatments. Annals of Translational Medicine, 2019, 7, S110-S110.	1.7	3
17	Clinical Cell Therapy Guidelines for Neurorestoration (IANR/CANR 2017). Cell Transplantation, 2018, 27, 310-324.	2.5	40
18	Autism Spectrum Disorders: Potential Neuro-Psychopharmacotherapeutic Plant-Based Drugs. Assay and Drug Development Technologies, 2018, 16, 433-444.	1.2	12

#	Article	IF	CITATIONS
19	Melatonin for Autism Spectrum Disorder: Beyond Sleep Disturbances?. Autism-open Access, 2018, 08, .	0.2	0
20	Stem cell therapy in autism: recent insights. Stem Cells and Cloning: Advances and Applications, 2018, Volume 11, 55-67.	2.3	28
21	Intraperitoneal Administration of Oxygen/Ozone to Rats Reduces the Pancreatic Damage Induced by Streptozotocin. Biology, 2018, 7, 10.	2.8	18
22	Inflammation and Neuro-Immune Dysregulations in Autism Spectrum Disorders. Pharmaceuticals, 2018, 11, 56.	3.8	167
23	Autism and neuro-immune-gut link. AIMS Molecular Science, 2018, 5, 166-172.	0.5	8
24	Biomedical approach in autism spectrum disorders—the importance of assessing inflammation. AIMS Molecular Science, 2018, 5, 173-182.	0.5	1
25	Immunomodulatory effects of stem cells: Therapeutic option for neurodegenerative disorders. Biomedicine and Pharmacotherapy, 2017, 91, 60-69.	5.6	24
26	Intestinal Dysbiosis and Yeast Isolation in Stool of Subjects with Autism Spectrum Disorders. Mycopathologia, 2017, 182, 349-363.	3.1	115
27	Endocannabinod Signal Dysregulation in Autism Spectrum Disorders: A Correlation Link between Inflammatory State and Neuro-Immune Alterations. International Journal of Molecular Sciences, 2017, 18, 1425.	4.1	40
28	Autismo ed infi ammazione. Pnei Review, 2017, , 33-40.	0.1	0
29	A Step Forward for Autism: The New Declaration by European Union. Autism-open Access, 2016, 06, .	0.2	1
30	New born alliance for autism care and research: an Italian experience. Autism-open Access, 2016, 6, .	0.2	0
31	Peripheral Inflammatory Markers Contributing to Comorbidities in Autism. Behavioral Sciences (Basel,) Tj ETQq1	1 0.78431 2.1	l4 ggBT /Ov <mark>e</mark> r
32	Gut–Brain Axis: A New Revolution to Understand the Pathogenesis of Autism and Other Severe Neurological Diseases. , 2016, , 49-65.		0
33	Induced pluripotent stem cells as a cellular model for studying Down Syndrome. Journal of Stem Cells and Regenerative Medicine, 2016, 12, 54-60.	2.2	16
34	Autism or New Autisms? A Psychologist Point of View. Autism-open Access, 2016, 6, .	0.2	0
35	Decreased Numbers of CD57+CD3- Cells Identify Potential Innate Immune Differences in Patients with Autism Spectrum Disorder. In Vivo, 2016, 30, 83-9.	1.3	14
36	Research Hypothesis in Autism: The Role of Therapeutical Ozone. Autism-open Access, 2015, 05, .	0.2	0

#	Article	IF	CITATIONS
37	Commentary: The Impact of Neuroimmune Alterations in Autism Spectrum Disorder. Frontiers in Psychiatry, 2015, 6, 145.	2.6	6
38	Beneficial Effects of Palmitoylethanolamide on Expressive Language, Cognition, and Behaviors in Autism: A Report of Two Cases. Case Reports in Psychiatry, 2015, 2015, 1-6.	0.5	22
39	Mesenchymal Stem Cells in the Treatment of Type 1 Diabetes Mellitus. Endocrine Pathology, 2015, 26, 95-103.	9.0	43
40	A New Opportunity for Autism: The First Specific Italian Law. Autism-open Access, 2015, 05, .	0.2	2
41	Current Therapies. , 2015, , 195-207.		Ο
42	Stem cell transplantation for nervous system disorders in Italy, European Union, and Ukraine: Clinical approach and governmental policies. Translational Neuroscience and Clinics, 2015, 1, 125-127.	0.1	0
43	Fetal stem cells are effective in the treatment of Grade â and â; respiratory failure in amyotrophic lateral sclerosis and muscular dystrophy. Translational Neuroscience and Clinics, 2015, 1, 10-16.	0.1	0
44	Nuclear Magnetic Resonance Spectroscopy in the Diagnosis of Autism-Related Disorders. , 2015, , 131-142.		0
45	Fetal Stem Cells are Effective in the Treatment of Grade I and II Respiratory Failure in Amyotrophic Lateral Sclerosis and Muscular Dystrophy. Translational Neuroscience and Clinics, 2015, 1, 10-16.	0.1	0
46	The searching for autism biomarkers: a commentary on: a new methodology of viewing extra-axial fluid and cortical abnormalities in children with autism via transcranial ultrasonography. Frontiers in Human Neuroscience, 2014, 8, 240.	2.0	1
47	Efficacy of fetal stem cells in Duchenne muscular dystrophy therapy. Journal of Neurorestoratology, 2014, , 37.	2.5	5
48	Endocannabinoid System as Novel Therapeutic Target for Autism Treatment. Autism-open Access, 2014, 04, .	0.2	4
49	The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages. Journal of Neuroinflammation, 2014, 11, 78.	7.2	42
50	The A1 adenosine receptor as a new player in microglia physiology. Glia, 2014, 62, 122-132.	4.9	86
51	Mesenchymal stem cells in treating autism: Novel insights. World Journal of Stem Cells, 2014, 6, 173.	2.8	21
52	Efficacy of Fetal Stem Cell Transplantation in Autism Spectrum Disorders: An Open-Labeled Pilot Study. Cell Transplantation, 2014, 23, 105-112.	2.5	45
53	Iron overload causes osteoporosis in thalassemia major patients through interaction with transient receptor potential vanilloid type 1 (TRPV1) channels. Haematologica, 2014, 99, 1876-1884.	3.5	64
54	Adhesion G-protein Coupled Receptors in Autism. Autism-open Access, 2014, 03, .	0.2	3

#	Article	IF	CITATIONS
55	Receptor/Regulatory Molecules Pattern Changes: Caspases in Autism Spectrum Disorders. , 2014, , 1245-1257.		1
56	Gut Bacteria–Brain Axis in Autism. Autism-open Access, 2014, 03, .	0.2	1
57	Cannabinoid Receptor Type 2, but not Type 1, is Up-Regulated in Peripheral Blood Mononuclear Cells of Children Affected by Autistic Disorders. Journal of Autism and Developmental Disorders, 2013, 43, 2686-2695.	2.7	86
58	Epigenetic Findings in Autism: New Perspectives for Therapy. International Journal of Environmental Research and Public Health, 2013, 10, 4261-4273.	2.6	65
59	Possible use of Trichuris suis ova in autism spectrum disorders therapy. Medical Hypotheses, 2013, 81, 1-4.	1.5	22
60	Role of metabotropic glutamate receptor 1 in the basolateral amygdala-driven prefrontal cortical deactivation in inflammatory pain in the rat. Neuropharmacology, 2013, 66, 317-329.	4.1	51
61	Antibodies against Food Antigens in Patients with Autistic Spectrum Disorders. BioMed Research International, 2013, 2013, 1-11.	1.9	53
62	Therapeutic Role of Hematopoietic Stem Cells in Autism Spectrum Disorder-Related Inflammation. Frontiers in Immunology, 2013, 4, 140.	4.8	28
63	Perspectives on the Use of Stem Cells for Autism Treatment. Stem Cells International, 2013, 2013, 1-7.	2.5	26
64	Ethics in Autism Care. Autism-open Access, 2013, 03, .	0.2	2
65	Involvement of Dietary Bioactive Proteins and Peptides in Autism Spectrum Disorders. Current Protein and Peptide Science, 2013, 14, 1-6.	1.4	9
66	Treatment of the Child with Autism-Newest Medical Trends. Autism-open Access, 2013, 03, .	0.2	0
67	Role of Proteases in Autism Spectrum Disorders. , 2013, , 327-333.		Ο
68	Involvement of dietary bioactive proteins and peptides in autism spectrum disorders. Current Protein and Peptide Science, 2013, 14, 674-9.	1.4	5
69	TRPV1-Dependent and -Independent Alterations in the Limbic Cortex of Neuropathic Mice: Impact on Glial Caspases and Pain Perception. Cerebral Cortex, 2012, 22, 2495-2518.	2.9	88
70	Autism Spectrum Disorders: Is Mesenchymal Stem Cell Personalized Therapy the Future?. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-6.	3.0	41
71	Stem Cell Research: An Opportunity for Autism Spectrum Disorders Treatment. Autism-open Access, 2012, 02, .	0.2	6
72	The Expression of Caspases is Enhanced in Peripheral Blood Mononuclear Cells of Autism Spectrum Disorder Patients, Journal of Autism and Developmental Disorders, 2012, 42, 1403-1410	2.7	63

#	Article	IF	CITATIONS
73	Novel insights in basic and applied stem cell therapy. Journal of Cellular Physiology, 2012, 227, 2283-2286.	4.1	16
74	Current Findings and Research Prospective in Autism Spectrum Disorders. Autism-open Access, 2012, 02, .	0.2	5
75	The Promise of Regenerative Medicine and Stem Cell Research for the Treatment of Autism. Journal of Regenerative Medicine, 2012, 01, .	0.1	6
76	Suspended Life - Stem Cells: Are Treatments Possible?. Journal of Regenerative Medicine, 2012, 02, .	0.1	4
77	Nobel Prize to Inducent Pluripotent Stem Cells and Cloning: A Milestone for the Regenerative Medicine. Journal of Regenerative Medicine, 2012, 01, .	0.1	0
78	The endovanilloid/endocannabinoid system: A new potential target for osteoporosis therapy. Bone, 2011, 48, 997-1007.	2.9	55
79	Long-Lasting Effects of Human Mesenchymal Stem Cell Systemic Administration on Pain-Like Behaviors, Cellular, and Biomolecular Modifications in Neuropathic Mice. Frontiers in Integrative Neuroscience, 2011, 5, 79.	2.1	94
80	The galactosylation of Nω-nitro-L-arginine enhances its anti-nocifensive or anti-allodynic effects by targeting glia in healthy and neuropathic mice. European Journal of Pharmacology, 2011, 656, 52-62.	3.5	14
81	The Blockade of the Transient Receptor Potential Vanilloid Type 1 and Fatty Acid Amide Hydrolase Decreases Symptoms and Central Sequelae in the Medial Prefrontal Cortex of Neuropathic Rats. Molecular Pain, 2011, 7, 1744-8069-7-7.	2.1	75
82	Role of Neurotrophins in Neuropathic Pain. Current Neuropharmacology, 2011, 9, 523-529.	2.9	84
83	Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice. Cellular and Molecular Life Sciences, 2010, 67, 655-669.	5.4	91
84	Mesenchymal stem cell therapy for the treatment of chronic obstructive pulmonary disease. Expert Opinion on Biological Therapy, 2010, 10, 681-687.	3.1	63
85	Transplantation of Human Mesenchymal Stem Cells in the Study of Neuropathic Pain. Methods in Molecular Biology, 2010, 617, 337-345.	0.9	12
86	Effects of URB597, an inhibitor of fatty acid amide hydrolase (FAAH), on analgesic activity of paracetamol. Neuroendocrinology Letters, 2010, 31, 507-11.	0.2	6
87	The endovanilloid/endocannabinoid system in human osteoclasts: Possible involvement in bone formation and resorption. Bone, 2009, 44, 476-484.	2.9	132
88	A single subcutaneous injection of ozone prevents allodynia and decreases the over-expression of pro-inflammatory caspases in the orbito-frontal cortex of neuropathic mice. European Journal of Pharmacology, 2009, 603, 42-49.	3.5	56
89	Modification of Cysteinyl Leukotriene Receptors Expression in Capsular Contracture. Annals of Plastic Surgery, 2009, 63, 206-208.	0.9	13
90	Involvement of subtype 1 metabotropic glutamate receptors in apoptosis and caspase-7 over-expression in spinal cord of neuropathic rats. Pharmacological Research, 2008, 57, 223-233.	7.1	24

#	Article	IF	CITATIONS
91	Review: Stem cell therapy: the great promise in lung disease. Therapeutic Advances in Respiratory Disease, 2008, 2, 173-177.	2.6	44
92	Apoptotic gene expression in neuropathic pain. Nature Precedings, 2008, , .	0.1	0
93	Molecular Approaches for Neuropathic Pain Treatment. Current Medicinal Chemistry, 2007, 14, 1783-1787.	2.4	36
94	Modification of Cysteinyl Leukotriene Receptor Expression in Capsular Contracture. Annals of Plastic Surgery, 2007, 58, 212-214.	0.9	29
95	Role of reactive oxygen species and spinal cord apoptotic genes in the development of neuropathic pain. Pharmacological Research, 2007, 55, 158-166.	7.1	98
96	AM404, an inhibitor of anandamide uptake, prevents pain behaviour and modulates cytokine and apoptotic pathways in a rat model of neuropathic pain. British Journal of Pharmacology, 2006, 148, 1022-1032.	5.4	89
97	Role of periaqueductal grey prostaglandin receptors in formalin-induced hyperalgesia. European Journal of Pharmacology, 2006, 530, 40-47.	3.5	28
98	Neuropathic Pain: Is the End of Suffering Starting in the Gene Therapy?. Current Drug Targets, 2005, 6, 75-80.	2.1	22
99	Differential roles of mGlu8 receptors in the regulation of glutamate and γ-aminobutyric acid release at periaqueductal grey level. Neuropharmacology, 2005, 49, 157-166.	4.1	41
100	Molecular Methods for Neuropathic Pain Treatment. Journal of Neuropathic Pain & Symptom Palliation, 2005, 1, 35-43.	0.1	0
101	Metabotropic glutamate receptor 5 and dorsal raphe serotonin release in inflammatory pain in rat. European Journal of Pharmacology, 2004, 492, 169-176.	3.5	25
102	Blockade of glutamate mGlu5 receptors in a rat model of neuropathic pain prevents early over-expression of pro-apoptotic genes and morphological changes in dorsal horn lamina II. Neuropharmacology, 2004, 46, 468-479.	4.1	78
103	Apoptotic genes expression in the lumbar dorsal horn in a model neuropathic pain in rat. NeuroReport, 2002, 13, 101-106.	1.2	47