List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4205156/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Predominance of hyperopia in autosomal dominant Best vitelliform macular dystrophy. British Journal of Ophthalmology, 2022, 106, 522-527.	3.9	6
2	Long-Term Outcomes and Risk Factors for Severe Vision Loss in Autosomal Dominant Neovascular Inflammatory Vitreoretinopathy (ADNIV). American Journal of Ophthalmology, 2022, 233, 144-152.	3.3	4
3	Intravitreal antisense oligonucleotide sepofarsen in Leber congenital amaurosis type 10: a phase 1b/2 trial. Nature Medicine, 2022, 28, 1014-1021.	30.7	46
4	Age-Related Macular Degeneration Masquerade: A Review of Pentosan Polysulfate Maculopathy and Implications for Clinical Practice. Asia-Pacific Journal of Ophthalmology, 2022, 11, 100-110.	2.5	3
5	Biocompatibility of Human Induced Pluripotent Stem Cell–Derived Retinal Progenitor Cell Grafts in Immunocompromised Rats. Cell Transplantation, 2022, 31, 096368972211044.	2.5	9
6	Stargardt disease masquerades. Current Opinion in Ophthalmology, 2021, 32, 214-224.	2.9	5
7	Cell–Matrix Interactions in the Eye: From Cornea to Choroid. Cells, 2021, 10, 687.	4.1	39
8	Genetic Association between MMP9 and Choroidal Neovascularization in Age-Related Macular Degeneration. Ophthalmology Science, 2021, 1, 100002.	2.5	6
9	Mitochondrial DNA A3243G variant-associated retinopathy: a meta-analysis of the clinical course of visual acuity and correlation with systemic manifestations. Ophthalmic Genetics, 2021, 42, 420-430.	1.2	4
10	Artificial intelligence for diagnosis of inherited retinal disease: an exciting opportunity and one step forward. British Journal of Ophthalmology, 2021, 105, 1187-1189.	3.9	7
11	The effect of retinal scaffold modulus on performance during surgical handling. Experimental Eye Research, 2021, 207, 108566.	2.6	5
12	Intrafamilial Variability of Ocular Manifestations of von Hippel-Lindau Disease. Ophthalmology Retina, 2021, 6, 89-89.	2.4	1
13	Automated segmentation of choroidal layers from 3-dimensional macular optical coherence tomography scans. Journal of Neuroscience Methods, 2021, 360, 109267.	2.5	5
14	Diagnostic and Therapeutic Challenges. Retina, 2021, 41, 2412-2415.	1.7	0
15	Correlation of features on OCT with visual acuity and Gass lesion type in Best vitelliform macular dystrophy. BMJ Open Ophthalmology, 2021, 6, e000860.	1.6	5
16	POSTERIORLY INSERTED VITREOUS BASE. Retina, 2020, 40, 943-950.	1.7	14
17	Reply. Retina, 2020, 40, e68-e69.	1.7	1
18	Attaining functional levels of visual acuity after vitrectomy for retinal detachment secondary to proliferative diabetic retinopathy. Scientific Reports, 2020, 10, 15637.	3.3	9

#	Article	IF	CITATIONS
19	Retinal Tropism and Transduction of Adeno-Associated Virus Varies by Serotype and Route of Delivery (Intravitreal, Subretinal, or Suprachoroidal) in Rats. Human Gene Therapy, 2020, 31, 1288-1299.	2.7	28
20	Visualization of Mouse Choroidal and Retinal Vasculature Using Fluorescent Tomato Lectin Perfusion. Translational Vision Science and Technology, 2020, 9, 1.	2.2	12
21	Multiresolution LOGISMOS graph search for automated choroidal layer segmentation of 3D macular OCT scans. , 2020, , .		3
22	Diabetic Retinal Neurodegeneration—Should We Redefine Retinopathy From Diabetes?. JAMA Ophthalmology, 2019, 137, 1132.	2.5	8
23	Helper-Dependent Adenovirus Transduces the Human and Rat Retina but Elicits an Inflammatory Reaction When Delivered Subretinally in Rats. Human Gene Therapy, 2019, 30, 1371-1384.	2.7	19
24	Two-photon polymerized poly(caprolactone) retinal cell delivery scaffolds and their systemic and retinal biocompatibility. Acta Biomaterialia, 2019, 94, 204-218.	8.3	51
25	Optimizing Donor Cellular Dissociation and Subretinal Injection Parameters for Stem Cell-Based Treatments. Stem Cells Translational Medicine, 2019, 8, 797-809.	3.3	21
26	Choriocapillaris Degeneration in Geographic Atrophy. American Journal of Pathology, 2019, 189, 1473-1480.	3.8	48
27	Anti–Vascular Endothelial Growth Factor Therapy for Diabetic Retinopathy: Consequences of Inadvertent Treatment Interruptions. American Journal of Ophthalmology, 2019, 204, 13-18.	3.3	51
28	Effect of an intravitreal antisense oligonucleotide on vision in Leber congenital amaurosis due to a photoreceptor cilium defect. Nature Medicine, 2019, 25, 225-228.	30.7	177
29	APOPTOSIS AND ANGIOFIBROSIS IN DIABETIC TRACTIONAL MEMBRANES AFTER VASCULAR ENDOTHELIAL GROWTH FACTOR INHIBITION. Retina, 2019, 39, 265-273.	1.7	18
30	Fluorescein Angiography Does Not Alter the Initial Clinical Management of Choroidal Neovascularization in Age-Related Macular Degeneration. Ophthalmology Retina, 2018, 2, 659-666.	2.4	6
31	Assessment of Adeno-Associated Virus Serotype Tropism in Human Retinal Explants. Human Gene Therapy, 2018, 29, 424-436.	2.7	53
32	Correlation of Optical Coherence Tomography and Retinal Histology in Normal and Pro23His Retinal Degeneration Pig. Translational Vision Science and Technology, 2018, 7, 18.	2.2	13
33	Imidazole Compounds for Protecting Choroidal Endothelial Cells from Complement Injury. Scientific Reports, 2018, 8, 13387.	3.3	7
34	Approach for a Clinically Useful Comprehensive Classification of Vascular and Neural Aspects of Diabetic Retinal Disease. , 2018, 59, 519.		62
35	Effect of Molecular Weight and Functionality on Acrylated Poly(caprolactone) for Stereolithography and Biomedical Applications. Biomacromolecules, 2018, 19, 3682-3692.	5.4	51
36	Retinal Oxalosis in End-stage Renal Disease. JAMA Ophthalmology, 2018, 136, e181523.	2.5	2

#	Article	IF	CITATIONS
37	Human Retinal Engineering using 3D PCL Scaffolds. FASEB Journal, 2018, 32, 816.12.	0.5	0
38	From compliment to insult: genetics of the complement system in physiology and disease in the human retina. Human Molecular Genetics, 2017, 26, R51-R57.	2.9	14
39	Using CRISPR-Cas9 to Generate Gene-Corrected Autologous iPSCs for the Treatment of Inherited Retinal Degeneration. Molecular Therapy, 2017, 25, 1999-2013.	8.2	121
40	OCULAR HYPERTENSION AFTER INTRAVITREAL DEXAMETHASONE (OZURDEX) SUSTAINED-RELEASE IMPLANT. Retina, 2017, 37, 1345-1351.	1.7	37
41	Choroidal Features of Acute Macular Neuroretinopathy via Optical Coherence Tomography Angiography and Correlation With Serial Multimodal Imaging. JAMA Ophthalmology, 2017, 135, 1177.	2.5	45
42	Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65 -mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet, The, 2017, 390, 849-860.	13.7	1,250
43	CLINICOPATHOLOGICAL CORRELATION IN A PATIENT WITH PREVIOUSLY TREATED BIRDSHOT CHORIORETINOPATHY. Retinal Cases and Brief Reports, 2017, 11, 344-347.	0.6	10
44	Lentiviral Vector Gene Transfer of Endostatin/Angiostatin for Macular Degeneration (GEM) Study. Human Gene Therapy, 2017, 28, 99-111.	2.7	151
45	Structural and molecular changes in the aging choroid: implications for age-related macular degeneration. Eye, 2017, 31, 10-25.	2.1	146
46	Association of reduced Connexin 43 expression with retinal vascular lesions in human diabetic retinopathy. Experimental Eye Research, 2016, 146, 103-106.	2.6	25
47	Phenotypic Variation in a Family With Pseudodominant Stargardt Disease. JAMA Ophthalmology, 2016, 134, 580.	2.5	15
48	Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2655-64.	7.1	442
49	Molecular response of chorioretinal endothelial cells to complement injury: implications for macular degeneration. Journal of Pathology, 2016, 238, 446-456.	4.5	47
50	Peripheral Cryoablation for Treatment of Active Pars Planitis: Long-Term Outcomes of a Retrospective Study. American Journal of Ophthalmology, 2016, 162, 35-42.e2.	3.3	13
51	Allogenic iPSC-derived RPE cell transplants induce immune response in pigs: a pilot study. Scientific Reports, 2015, 5, 11791.	3.3	48
52	Oral mineralocorticoid antagonists for recalcitrant central serous chorioretinopathy. Clinical Ophthalmology, 2015, 9, 1449.	1.8	46
53	Long-term outcomes in patients undergoing vitrectomy for retinal detachment due to viral retinitis. Clinical Ophthalmology, 2015, 9, 1307.	1.8	22
54	Complement activation and choriocapillaris loss in early AMD: Implications for pathophysiology and therapy. Progress in Retinal and Eye Research, 2015, 45, 1-29.	15.5	189

#	Article	IF	CITATIONS
55	COMPARISON OF DRUSEN AND MODIFYING GENES IN AUTOSOMAL DOMINANT RADIAL DRUSEN AND AGE-RELATED MACULAR DEGENERATION. Retina, 2015, 35, 48-57.	1.7	34
56	Sustained and expedited resolution of diabetic papillopathy with combined PRP and bevacizumab. Canadian Journal of Ophthalmology, 2015, 50, e88-e91.	0.7	4
57	Evolution of Septated Cavitary Subretinal Fluid After Treatment of Choroidal Metastasis. Ophthalmic Surgery Lasers and Imaging Retina, 2015, 46, 482-484.	0.7	1
58	Structural and Biochemical Analyses of Choroidal Thickness in Human Donor Eyes. , 2014, 55, 1352.		77
59	Loss of CD34 Expression in Aging Human Choriocapillaris Endothelial Cells. PLoS ONE, 2014, 9, e86538.	2.5	23
60	Automated 3D Segmentation of Intraretinal Surfaces in SD-OCT Volumes in Normal and Diabetic Mice. Translational Vision Science and Technology, 2014, 3, 8.	2.2	15
61	Structural and Functional Changes After Macular Hole Surgery. International Ophthalmology Clinics, 2014, 54, 17-27.	0.7	12
62	Is Age-Related Macular Degeneration a Microvascular Disease?. Advances in Experimental Medicine and Biology, 2014, 801, 283-289.	1.6	25
63	The Membrane Attack Complex in Aging Human Choriocapillaris. American Journal of Pathology, 2014, 184, 3142-3153.	3.8	174
64	Incomplete Vitreomacular Traction Release Using Intravitreal Ocriplasmin. Case Reports in Ophthalmology, 2014, 5, 455-462.	0.7	11
65	DECREASED MACULAR THICKNESS IN NONPROLIFERATIVE MACULAR TELANGIECTASIA TYPE 2 WITH ORAL CARBONIC ANHYDRASE INHIBITORS. Retina, 2014, 34, 1400-1406.	1.7	8
66	Unilateral manifestation of autoimmune retinopathy. Canadian Journal of Ophthalmology, 2014, 49, e85-e87.	0.7	4
67	Endophthalmitis secondary to globe penetration from hydrogel scleral buckle. International Journal of Ophthalmology, 2014, 7, 585-6.	1.1	6
68	Paracentral Acute Middle Maculopathy. JAMA Ophthalmology, 2013, 131, 1275.	2.5	365
69	Macular Dystrophies. , 2013, , 852-890.		7
70	Combination Therapy for Neovascular Age-related Macular Degeneration Refractory to Anti-Vascular Endothelial Growth FactorÂAgents. Ophthalmology, 2013, 120, 2029-2034.	5.2	59
71	Aflibercept Therapy for Exudative Age-related Macular Degeneration Resistant to Bevacizumab and Ranibizumab. American Journal of Ophthalmology, 2013, 156, 15-22.e1.	3.3	217
72	A combined machine-learning and graph-based framework for the segmentation of retinal surfaces in SD-OCT volumes. Biomedical Optics Express, 2013, 4, 2712.	2.9	46

#	Article	IF	CITATIONS
73	PROLIFERATIVE VITREORETINOPATHY MAY BE A RISK FACTOR IN COMBINED MACULAR HOLE RETINAL DETACHMENT CASES. Retina, 2013, 33, 579-585.	1.7	18
74	ELIMINATION OF INFUSION BUBBLES AND UNCONTROLLED REFLUX IN THE ALCON CONSTELLATION VITRECTOMY VISION SYSTEM. Retina, 2013, 33, 803-806.	1.7	0
75	Reproducibility of Diabetic Macular Edema Estimates From SD-OCT Is Affected by the Choice of Image Analysis Algorithm. , 2013, 54, 4184.		27
76	Altered gene expression in dry age-related macular degeneration suggests early loss of choroidal endothelial cells. Molecular Vision, 2013, 19, 2274-97.	1.1	47
77	Quantification of External Limiting Membrane Disruption Caused by Diabetic Macular Edema from SD-OCT. , 2012, 53, 8042.		42
78	Three-dimensional Distribution of the Vitelliform Lesion, Photoreceptors, and Retinal Pigment Epithelium in the Macula of Patients With Best Vitelliform Macular Dystrophy. JAMA Ophthalmology, 2012, 130, 357.	2.4	54
79	Angiofibrotic Response to Vascular Endothelial Growth Factor Inhibition in Diabetic Retinal Detachment. JAMA Ophthalmology, 2012, 130, 1127.	2.4	47
80	Intravitreal Bevacizumab for Peripapillary Choroidal Neovascular Membranes. JAMA Ophthalmology, 2012, 130, 1073.	2.4	8
81	Phenotypic Variability in RDH5 Retinopathy (Fundus Albipunctatus). Ophthalmology, 2011, 118, 1661-1670.	5.2	81
82	Long-Term, Multicenter Evaluation of Subconjunctival Injection of Triamcinolone for Non-Necrotizing, Noninfectious Anterior Scleritis. Ophthalmology, 2011, 118, 1932-1937.	5.2	66
83	Responsiveness of Choroidal Neovascular Membranes in Patients With R345W Mutation in Fibulin 3 (Doyne Honeycomb Retinal Dystrophy) to Anti–Vascular Endothelial Growth Factor Therapy. JAMA Ophthalmology, 2011, 129, 1626.	2.4	21
84	Novel mutation in PANK2 associated with retinal telangiectasis. British Journal of Ophthalmology, 2011, 95, 149-150.	3.9	11
85	HAND-HELD SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY FINDING IN SHAKEN-BABY SYNDROME. Retina, 2010, 30, S45-S50.	1.7	64
86	RETINAL PIGMENT EPITHELIAL CHANGES IN CHRONIC VOGT-KOYANAGI-HARADA DISEASE. Retina, 2010, 30, 33-41.	1.7	54
87	Clinical Features of Tuberculous Serpiginouslike Choroiditis in Contrast to Classic Serpiginous Choroiditis. JAMA Ophthalmology, 2010, 128, 853.	2.4	109
88	Macular Function Assessed by Microperimetry in Patients with Enhanced S-Cone Syndrome. Ophthalmology, 2010, 117, 1199-1206.e1.	5.2	40
89	Phenotypic Variability Due to a Novel Glu292Lys Variation in Exon 8 of the BEST1 Gene Causing Best Macular Dystrophy. JAMA Ophthalmology, 2009, 127, 913.	2.4	36
90	Ocular Trauma From Nail Gun Cartridge Wire. JAMA Ophthalmology, 2007, 125, 701.	2.4	3

#	Article	IF	CITATIONS
91	Testosterone (T)-Induced Changes in Arcuate Nucleus Cocaine-Amphetamine-Regulated Transcript and NPY mRNA Are Attenuated in Old Compared to Young Male Brown Norway Rats: Contribution of T to Age-Related Changes in Cocaine-Amphetamine-Regulated Transcript and NPY Gene Expression. Endocrinology, 2002, 143, 954-963.	2.8	53
92	Kinetic Isotope Effects in the Chromium(vi) Oxidation of Bicyclic Alcohols. Journal of Chemical Research Synopses, 1999, , 146-147.	0.3	1
93	Intravitreal Sepofarsen for Leber Congenital Amaurosis Type 10 (LCA10). SSRN Electronic Journal, 0, , .	0.4	0