Mathias Montenarh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4204422/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SGC-CK2-1 Is an Efficient Inducer of Insulin Production and Secretion in Pancreatic Î ² -Cells. Pharmaceutics, 2022, 14, 19.	4.5	5
2	Inhibition of CK2 Reduces NG2 Expression in Juvenile Angiofibroma. Biomedicines, 2022, 10, 966.	3.2	5
3	Control of TRPM3 Ion Channels by Protein Kinase CK2-Mediated Phosphorylation in Pancreatic β-Cells of the Line INS-1. International Journal of Molecular Sciences, 2021, 22, 13133.	4.1	7
4	Protein Kinase CK2 Controls CaV2.1-Dependent Calcium Currents and Insulin Release in Pancreatic β-cells. International Journal of Molecular Sciences, 2020, 21, 4668.	4.1	6
5	The stability of CREB3/Luman is regulated by protein kinase CK2 phosphorylation. Biochemical and Biophysical Research Communications, 2020, 523, 639-644.	2.1	3
6	Protein kinase CK2 and ion channels (Review). Biomedical Reports, 2020, 13, 1-1.	2.0	18
7	Protein Kinase CK2—A Putative Target for the Therapy of Diabetes Mellitus?. International Journal of Molecular Sciences, 2019, 20, 4398.	4.1	24
8	The impact of cigarette smoking on protamines 1 and 2 transcripts in human spermatozoa. Human Fertility, 2019, 22, 104-110.	1.7	12
9	Influence of cryopreservation on the CATSPER2 and TEKT2 expression levels and protein levels in human spermatozoa. Toxicology Reports, 2019, 6, 819-824.	3.3	14
10	The status of global DNA methylation in the spermatozoa of smokers and non-smokers. Reproductive BioMedicine Online, 2018, 37, 581-589.	2.4	27
11	Ecto‑protein kinase CK2, the neglected form of CK2 (Review). Biomedical Reports, 2018, 8, 307-313.	2.0	16
12	Protein kinase CK2 in development and differentiation. Biomedical Reports, 2017, 6, 127-133.	2.0	77
13	Novel coumarin- and quinolinone-based polycycles as cell division cycle 25-A and -C phosphatases inhibitors induce proliferation arrest and apoptosis in cancer cells. European Journal of Medicinal Chemistry, 2017, 134, 316-333.	5.5	24
14	The mammalian STE20-like kinase 1 (MST1) is a substrate for the apoptosis inhibiting protein kinase CK2. Cellular Signalling, 2017, 36, 163-175.	3.6	14
15	Quinalizarin inhibits adipogenesis through down-regulation of transcription factors and microRNA modulation. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3272-3281.	2.4	10
16	Impact of protein kinase CK2 inhibitors on proliferation and differentiation of neural stem cells. Heliyon, 2017, 3, e00318.	3.2	10
17	Functional interplay between the transcription factors USF1 and PDX-1 and protein kinase CK2 in pancreatic Î ² -cells. Scientific Reports, 2017, 7, 16367.	3.3	18
18	The Phosphorylation of PDX-1 by Protein Kinase CK2 Is Crucial for Its Stability. Pharmaceuticals, 2017, 10, 2.	3.8	19

MATHIAS MONTENARH

#	Article	IF	CITATIONS
19	Inhibition of Protein Kinase CK2 Prevents Adipogenic Differentiation of Mesenchymal Stem Cells Like C3H/10T1/2 Cells. Pharmaceuticals, 2017, 10, 22.	3.8	10
20	The nuclear fraction of protein kinase CK2 binds to the upstream stimulatory factors (USFs) in the absence of DNA. Cellular Signalling, 2016, 28, 23-31.	3.6	7
21	Role of protein kinase CK2 in the dynamic interaction of platelets, leukocytes and endothelial cells during thrombus formation. Thrombosis Research, 2015, 136, 996-1006.	1.7	15
22	A scent of therapy: Synthetic polysulfanes with improved physico-chemical properties induce apoptosis in human cancer cells. International Journal of Oncology, 2015, 47, 991-1000.	3.3	12
23	CK2 phosphorylation of C/EBPδ regulates its transcription factor activity. International Journal of Biochemistry and Cell Biology, 2015, 61, 81-89.	2.8	16
24	Inhibition of protein kinase CK2 suppresses tumor necrosis factor (TNF)-α-induced leukocyte–endothelial cell interaction. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 2123-2136.	3.8	24
25	A new tellurium-containing amphiphilic molecule induces apoptosis in HCT116 colon cancer cells. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1808-1816.	2.4	16
26	Synthetic polysulfane derivatives induce cell cycle arrest and apoptotic cell death in human hematopoietic cancer cells. Food and Chemical Toxicology, 2014, 64, 249-257.	3.6	42
27	ER stress signaling in ARPE-19 cells after inhibition of protein kinase CK2 by CX-4945. Cellular Signalling, 2014, 26, 1567-1575.	3.6	29
28	Synthesis of amphiphilic, chalcogen-based redox modulators with in vitro cytotoxic activity against cancer cells, macrophages and microbes. MedChemComm, 2014, 5, 25-31.	3.4	30
29	The upstream stimulatory factor USF1 is regulated by protein kinase CK2 phosphorylation. Cellular Signalling, 2014, 26, 2809-2817.	3.6	12
30	Protein Kinase CK2 and Angiogenesis. Advances in Clinical and Experimental Medicine, 2014, 23, 153-158.	1.4	55
31	Glucose regulates protein kinase CK2 in pancreatic β-cells and its interaction with PDX-1. International Journal of Biochemistry and Cell Biology, 2013, 45, 2786-2795.	2.8	24
32	CK2 and the regulation of the carbohydrate metabolism. Metabolism: Clinical and Experimental, 2012, 61, 1512-1517.	3.4	56
33	CK2 phosphorylation of Pdx-1 regulates its transcription factor activity. Cellular and Molecular Life Sciences, 2010, 67, 2481-2489.	5.4	34
34	Phosphorylation of the von Hippel–Lindau protein (VHL) by protein kinase CK2 reduces its protein stability and affects p53 and HIF-1α mediated transcription. International Journal of Biochemistry and Cell Biology, 2010, 42, 1729-1735.	2.8	34
35	The role of protein kinase CK2 in the regulation of the insulin production of pancreatic islets. Biochemical and Biophysical Research Communications, 2010, 401, 203-206.	2.1	31
36	Wild-type p53 inhibits protein kinase CK2 activity. Journal of Cellular Biochemistry, 2001, 81, 172-183.	2.6	49

#	Article	IF	CITATIONS
37	Title is missing!. Molecular and Cellular Biochemistry, 2001, 227, 73-80.	3.1	38
38	Subcellular localization of protein kinase CK2. Cell and Tissue Research, 2000, 301, 329-340.	2.9	211
39	Regulation of p53 mediated transactivation by the β-subunit of protein kinase CK2. FEBS Letters, 1999, 447, 160-166.	2.8	37
40	Specific binding of protein kinase CK2 catalytic subunits to tubulin. FEBS Letters, 1999, 462, 51-56.	2.8	78
41	Regulation of CAK kinase activity by p53. Oncogene, 1998, 17, 2733-2741.	5.9	71