
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4204398/publications.pdf Version: 2024-02-01

ΙΙΔΝΙ ΗΙΙΔ

#	Article	lF	CITATIONS
1	Reduction of the canonical function of a glycolytic enzyme enolase triggers immune responses that further affect metabolism and growth in Arabidopsis. Plant Cell, 2022, 34, 1745-1767.	3.1	15
2	N4-acetyldeoxycytosine DNA modification marks euchromatin regions in Arabidopsis thaliana. Genome Biology, 2022, 23, 5.	3.8	14
3	In situ deletions reveal regulatory components for expression of an intracellular immune receptor gene and its coâ€expressed genes in Arabidopsis. Plant, Cell and Environment, 2022, , .	2.8	2
4	Heterologous expression of the Haynaldia villosa pattern-recognition receptor CERK1-V in wheat increases resistance to three fungal diseases. Crop Journal, 2022, 10, 1733-1745.	2.3	7
5	Dehydration-Responsive Element Binding Protein 1C, 1E, and 1G Promote Stress Tolerance to Chilling, Heat, Drought, and Salt in Rice. Frontiers in Plant Science, 2022, 13, .	1.7	10
6	Arabidopsis immune-associated nucleotide-binding genes repress heat tolerance at the reproductive stage by inhibiting the unfolded protein response and promoting cell death. Molecular Plant, 2021, 14, 267-284.	3.9	15
7	Polymorphisms in <i>cis</i> â€elements confer <i>SAUR26</i> gene expression difference for thermoâ€response natural variation in Arabidopsis. New Phytologist, 2021, 229, 2751-2764.	3.5	19
8	A Meta-Analysis Reveals Opposite Effects of Biotic and Abiotic Stresses on Transcript Levels of Arabidopsis Intracellular Immune Receptor Genes. Frontiers in Plant Science, 2021, 12, 625729.	1.7	12
9	Identification and expression analysis of chloroplast ribonucleoproteins (cpRNPs) in Arabidopsis and rice. Genome, 2021, 64, 515-524.	0.9	4
10	HsfA1d promotes hypocotyl elongation under chilling via enhancing expression of ribosomal protein genes in Arabidopsis. New Phytologist, 2021, 231, 646-660.	3.5	11
11	Tissue-level transcriptomic responses to local and distal chilling reveal potential chilling survival mechanisms in maize. Journal of Experimental Botany, 2021, , .	2.4	4
12	ISWI chromatin remodeling factors repress PAD4-mediated plant immune responses in Arabidopsis. Biochemical and Biophysical Research Communications, 2021, 583, 63-70.	1.0	5
13	HOS15 and HDA9 negatively regulate immunity through histone deacetylation of intracellular immune receptor NLR genes in Arabidopsis. New Phytologist, 2020, 226, 507-522.	3.5	48
14	BONZAI Proteins Control Global Osmotic Stress Responses in Plants. Current Biology, 2020, 30, 4815-4825.e4.	1.8	39
15	CYCLIC NUCLEOTIDE-GATED ION CHANNELs 14 and 16 Promote Tolerance to Heat and Chilling in Rice. Plant Physiology, 2020, 183, 1794-1808.	2.3	93
16	Nuclear pore complex components have temperatureâ€influenced roles in plant growth and immunity. Plant, Cell and Environment, 2020, 43, 1452-1466.	2.8	20
17	Interactive Effects of Light Quality and Temperature on Arabidopsis Growth and Immunity. Plant and Cell Physiology, 2020, 61, 933-941.	1.5	10
18	Low Temperature Enhances Plant Immunity via Salicylic Acid Pathway Genes That Are Repressed by Ethylene. Plant Physiology, 2020, 182, 626-639.	2.3	40

#	Article	IF	CITATIONS
19	Cell autonomous and non-autonomous functions of plant intracellular immune receptors in stomatal defense andÂapoplastic defense. PLoS Pathogens, 2019, 15, e1008094.	2.1	11
20	PUB25 and PUB26 Promote Plant Freezing Tolerance by Degrading the Cold Signaling Negative Regulator MYB15. Developmental Cell, 2019, 51, 222-235.e5.	3.1	105
21	Natural variations of growth thermoâ€responsiveness determined by <scp>SAUR</scp> 26/27/28 proteins in <i>Arabidopsis thaliana</i> . New Phytologist, 2019, 224, 291-305.	3.5	16
22	Measuring Cell Ploidy Level in Arabidopsis thaliana by Flow Cytometry. Methods in Molecular Biology, 2019, 1991, 101-106.	0.4	11
23	<scp>EGR</scp> 2 phosphatase regulates <scp>OST</scp> 1 kinase activity and freezing tolerance in <i>Arabidopsis</i> . EMBO Journal, 2019, 38, .	3.5	100
24	Overlapping and differential roles of plasma membrane calcium ATPases in Arabidopsis growth and environmental responses. Journal of Experimental Botany, 2018, 69, 2693-2703.	2.4	35
25	Rice copine genes <i>Os<scp>BON</scp>1</i> and <i>Os<scp>BON</scp>3</i> function as suppressors of broadâ€spectrum disease resistance. Plant Biotechnology Journal, 2018, 16, 1476-1487.	4.1	27
26	Natural variation reveals that OsSAP16 controls low-temperature germination in rice. Journal of Experimental Botany, 2018, 69, 413-421.	2.4	81
27	<scp>MOS</scp> 1 functions closely with <scp>TCP</scp> transcription factors to modulate immunity and cell cycle in Arabidopsis. Plant Journal, 2018, 93, 66-78.	2.8	42
28	Silencing of copine genes confers common wheat enhanced resistance to powdery mildew. Molecular Plant Pathology, 2018, 19, 1343-1352.	2.0	25
29	Genotyping-by-sequencing of Brassica oleracea vegetables reveals unique phylogenetic patterns, population structure and domestication footprints. Horticulture Research, 2018, 5, 38.	2.9	37
30	Mapping and Cloning of Chemical Induced Mutations by Whole-Genome Sequencing of Bulked Segregants. Methods in Molecular Biology, 2017, 1578, 285-289.	0.4	4
31	A Role of Cytokinin Transporter in <i>Arabidopsis</i> Immunity. Molecular Plant-Microbe Interactions, 2017, 30, 325-333.	1.4	12
32	Sumoylation E3 Ligase SIZ1 Modulates Plant Immunity Partly through the Immune Receptor Gene <i>SNC1</i> in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2017, 30, 334-342.	1.4	42
33	Calcium Pumps and Interacting BON1 Protein Modulate Calcium Signature, Stomatal Closure, and Plant Immunity. Plant Physiology, 2017, 175, 424-437.	2.3	66
34	The Arabidopsis Chromatin-Remodeling Factor CHR5 Regulates Plant Immune Responses and Nucleosome Occupancy. Plant and Cell Physiology, 2017, 58, 2202-2216.	1.5	40
35	Defining roles of tandemly arrayed <i>CBF</i> genes in freezing tolerance with new genome editing tools. New Phytologist, 2016, 212, 301-302.	3.5	7
36	Identification and analysis of copine/BONZAI proteins among evolutionarily diverse plant species. Genome, 2016, 59, 565-573.	0.9	12

#	Article	IF	CITATIONS
37	Expression and promoter analysis of the OsHSP16.9C gene in rice. Biochemical and Biophysical Research Communications, 2016, 479, 260-265.	1.0	4
38	Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis. PLoS Genetics, 2016, 12, e1006027.	1.5	45
39	Linking the Cell Cycle with Innate Immunity in Arabidopsis. Molecular Plant, 2015, 8, 980-982.	3.9	13
40	Opposing effects on two phases of defense responses from concerted actions of HSC70 and BON1 in Arabidopsis. Plant Physiology, 2015, 169, pp.00970.2015.	2.3	26
41	Interaction of CPR5 with Cell Cycle Regulators UVI4 and OSD1 in Arabidopsis. PLoS ONE, 2014, 9, e100347.	1.1	24
42	Monoubiquitination of Histone 2B at the Disease Resistance Gene Locus Regulates Its Expression and Impacts Immune Responses in Arabidopsis Â. Plant Physiology, 2014, 165, 309-318.	2.3	96
43	Endopolyploidization and flowering time are antagonistically regulated by checkpoint component MAD1 and immunity modulator MOS1. Nature Communications, 2014, 5, 5628.	5.8	37
44	Modulation of plant immunity by light, circadian rhythm, and temperature. Current Opinion in Plant Biology, 2013, 16, 406-413.	3.5	151
45	Perturbation of cell cycle regulation triggers plant immune response via activation of disease resistance genes. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2407-2412.	3.3	50
46	Abscisic Acid Deficiency Antagonizes High-Temperature Inhibition of Disease Resistance through Enhancing Nuclear Accumulation of Resistance Proteins SNC1 and RPS4 in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 1271-1284.	3.1	104
47	Complex regulation of anRgeneSNC1revealed by autoimmune mutants. Plant Signaling and Behavior, 2012, 7, 213-216.	1.2	34
48	Gene Discovery Using Mutagen-Induced Polymorphisms and Deep Sequencing: Application to Plant Disease Resistance. Genetics, 2012, 192, 139-146.	1.2	59
49	The Fâ€box protein CPR1/CPR30 negatively regulates R protein SNC1 accumulation. Plant Journal, 2012, 69, 411-420.	2.8	128
50	Induction of <i>BAP1</i> by a Moderate Decrease in Temperature Is Mediated by <i>ICE1</i> in Arabidopsis. Plant Physiology, 2011, 155, 580-588.	2.3	31
51	Requirement of Calcium Binding, Myristoylation, and Protein-Protein Interaction for the Copine BON1 Function in Arabidopsis. Journal of Biological Chemistry, 2010, 285, 29884-29891.	1.6	23
52	Temperature Modulates Plant Defense Responses through NB-LRR Proteins. PLoS Pathogens, 2010, 6, e1000844.	2.1	256
53	Analysis of Temperature Modulation of Plant Defense Against Biotrophic Microbes. Molecular Plant-Microbe Interactions, 2009, 22, 498-506.	1.4	251
54	From freezing to scorching, transcriptional responses to temperature variations in plants. Current Opinion in Plant Biology, 2009, 12, 568-573.	3.5	113

#	Article	IF	CITATIONS
55	A moderate decrease in temperature induces <i>COR15a</i> expression through the CBF signaling cascade and enhances freezing tolerance. Plant Journal, 2009, 60, 340-349.	2.8	54
56	Multiple <i>R</i> -Like Genes Are Negatively Regulated by <i>BON1</i> and <i>BON3</i> in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2009, 22, 840-848.	1.4	51
57	The Arabidopsis <i>BAP1</i> and <i>BAP2</i> Genes Are General Inhibitors of Programmed Cell Death. Plant Physiology, 2007, 145, 135-146.	2.3	98
58	The TIR-NB-LRR Gene SNC1 Is Regulated at the Transcript Level by Multiple Factors. Molecular Plant-Microbe Interactions, 2007, 20, 1449-1456.	1.4	59
59	The C2 domain protein BAP1 negatively regulates defense responses in Arabidopsis. Plant Journal, 2006, 48, 238-248.	2.8	134
60	TheBON/CPNgene family represses cell death and promotes cell growth in Arabidopsis. Plant Journal, 2006, 45, 166-179.	2.8	101
61	A Haplotype-Specific Resistance Gene Regulated by BONZAI1 Mediates Temperature-Dependent Growth Control in Arabidopsis. Plant Cell, 2004, 16, 1060-1071.	3.1	292