
Jiaxiong Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/420414/publications.pdf Version: 2024-02-01

Ιμχιονς Χιι

#	Article	IF	CITATIONS
1	Inhibiting the formation of MoS2 between Cu2ZnSnS4 thin film and Mo(211) foil substrate by inserting a Mo(110) intermediate layer. Optical Materials, 2022, 124, 111996.	1.7	2
2	Investigation of the properties of CZTS/FTO interface. Optical Materials, 2021, 115, 111034.	1.7	1
3	Study on the role of Mn in Ag and Mn co-doped Cu2ZnSnS4 thin films. Materials Science in Semiconductor Processing, 2021, 129, 105787.	1.9	7
4	Influences of selenization temperature on the properties of CZTSSe thin films and CZTSSe/Mo interfaces. Journal of Materials Science: Materials in Electronics, 2021, 32, 28373-28381.	1.1	3
5	Numerical analysis of the effect of MoS2 interface layers on copper-zinc-tin-sulfur thin film solar cells. Optik, 2020, 201, 163496.	1.4	14
6	Study of interface properties between Cu2ZnSnS4 thin films and metal substrates. Ceramics International, 2020, 46, 218-226.	2.3	5
7	Effect of sulfur powder mass on the formation of MoS2 interface layer between Cu2ZnSnS4 thin film and Mo foil. Superlattices and Microstructures, 2020, 147, 106724.	1.4	4
8	Fabrication of Ag and Mn Co-Doped Cu2ZnSnS4 Thin Film. Nanomaterials, 2019, 9, 1520.	1.9	12
9	Influence of pre-sulfurization temperature on properties of Cu2ZnSnS4 thin film in two-step sulfurization process. Journal of Renewable and Sustainable Energy, 2019, 11, .	0.8	7
10	Fabrication of Cu2ZnSnS4 thin films by microwave assisted sol-gel method. Superlattices and Microstructures, 2019, 126, 83-88.	1.4	19
11	Analysis of the open-circuit voltage of Cu2ZnSn(S, Se)4 thin film solar cell. Solar Energy, 2018, 164, 231-242.	2.9	18
12	Effect of periodic precursor on sulfurization process of Cu2ZnSnS4 thin film. Ceramics International, 2018, 44, 20877-20882.	2.3	3
13	Effect of Substrate Bias on the Structural and Electrical Properties of Sputtered Mo Thin Films on Flexible Substrates. Journal of Applied Biomaterials and Functional Materials, 2016, 14, 20-23.	0.7	1
14	Fabrication of Cu2Zn(Sn,Si)S4 thin films using a two-step method for solar cell applications. Electronic Materials Letters, 2016, 12, 761-767.	1.0	6
15	Effects of copper content on properties of CZTS thin films grown on flexible substrate. Superlattices and Microstructures, 2016, 100, 1283-1290.	1.4	11
16	Investigation of Cu2ZnSnS4 thin-film solar cells with carrier concentration gradient. Journal of Physics and Chemistry of Solids, 2016, 98, 32-37.	1.9	11
17	Preparations of Cu2ZnSnS4 thin films and Cu2ZnSnS4/Si heterojunctions on silicon substrates by sputtering. Optik, 2016, 127, 1567-1571.	1.4	18
18	Characterization of Cu2ZnSnS4 thin films on flexible metal foil substrates. Journal of Materials Science: Materials in Electronics, 2015, 26, 726-733.	1.1	16

JIAXIONG XU

#	Article	IF	CITATIONS
19	Fabrication of Cu2ZnSnS4 thin films on flexible polyimide substrates by sputtering and post-sulfurization. Journal of Renewable and Sustainable Energy, 2014, 6, 053110.	0.8	15
20	Effects of band offset and doping concentration on the photovoltaic properties of nâ€Î²â€FeSi ₂ /pâ€5i and pâ€Î²â€FeSi ₂ /nâ€5i heterojunction solar cells. Surface and Int Analysis, 2014, 46, 248-253.	erfaæ	6
21	Study on the performances of SnS heterojunctions by numerical analysis. Energy Conversion and Management, 2014, 78, 260-265.	4.4	37
22	Study on the n- $\hat{1}^2$ -FeSi2/p-Si solar cells under different illuminated directions. Optik, 2014, 125, 7002-7006.	1.4	1
23	Fabrications of SnS thin films and SnS-based heterojunctions on flexible polyimide substrates. Journal of Materials Science: Materials in Electronics, 2014, 25, 3028-3033.	1.1	9
24	Improved photovoltaic properties of a-Si/β-FeSi2/c-Si double heterojunction by Al-doping. Physica B: Condensed Matter, 2012, 407, 756-758.	1.3	5
25	Growth of β-FeSi2 thin film on textured silicon substrate for solar cell application. Applied Surface Science, 2011, 257, 10168-10171.	3.1	9
26	Effect of Si/Fe ratio on the boron and phosphorus doping efficiency of β-FeSi2 by magnetron sputtering. Thin Solid Films, 2011, 520, 515-518.	0.8	1
27	Photovoltaic characteristics of <i>a</i> -Si/β-FeSi2/ <i>c</i> -Si double heterojunction fabricated by magnetron sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29.	0.9	10