
Wen Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4204073/publications.pdf Version: 2024-02-01

WEN YANG

#	Article	IF	CITATIONS
1	Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9684-9690.	10.3	216
2	Interfacial Regulation of Ni-Rich Cathode Materials with an Ion-Conductive and Pillaring Layer by Infusing Gradient Boron for Improved Cycle Stability. ACS Applied Materials & Interfaces, 2020, 12, 10240-10251.	8.0	80
3	Self-assembled Ni/NiO/RGO heterostructures for high-performance supercapacitors. RSC Advances, 2015, 5, 77958-77964.	3.6	67
4	Self-assembled hollow urchin-like NiCo ₂ O ₄ microspheres for aqueous asymmetric supercapacitors. RSC Advances, 2015, 5, 7575-7583.	3.6	56
5	Mo ₂ C-Embedded Carambola-like N,S-Rich Carbon Framework as the Interlayer Material for High-Rate Lithium–Sulfur Batteries in a Wide Temperature Range. ACS Applied Materials & Interfaces, 2020, 12, 22971-22980.	8.0	56
6	Mesoporous Ni/Ce _{1â´'x} Ni _x O _{2â´'y} heterostructure as an efficient catalyst for converting greenhouse gas to H ₂ and syngas. Catalysis Science and Technology, 2016, 6, 851-862.	4.1	52
7	Fabrication of microporous and mesoporous carbon spheres for high-performance supercapacitor electrode materials. International Journal of Energy Research, 2015, 39, 805-811.	4.5	43
8	Cerium Promoted Nano Nickel Catalysts Ni-Ce/CNTs and Ni-Ce/Al ₂ O ₃ for CO ₂ Methanation. Integrated Ferroelectrics, 2014, 151, 116-125.	0.7	35
9	Synthesis of carbon nanotubes using scrap tyre rubber as carbon source. Chinese Chemical Letters, 2012, 23, 363-366.	9.0	34
10	Cerium Oxide Promoted Ni/MgO Catalyst for the Synthesis of Multi-walled Carbon Nanotubes. Chinese Journal of Catalysis, 2011, 32, 1323-1328.	14.0	32
11	Dual-Modified Compact Layer and Superficial Ti Doping for Reinforced Structural Integrity and Thermal Stability of Ni-Rich Cathodes. ACS Applied Materials & Interfaces, 2021, 13, 54997-55006.	8.0	32
12	High Electrochemical Performance from Oxygen Functional Groups Containing Porous Activated Carbon Electrode of Supercapacitors. Materials, 2018, 11, 2455.	2.9	31
13	Effect of nitrogen-containing groups on methane adsorption behaviors of carbon spheres. Journal of Analytical and Applied Pyrolysis, 2014, 107, 204-210.	5.5	30
14	Promotion Effect of CaO Modification on Mesoporous Al ₂ O ₃ -Supported Ni Catalysts for CO ₂ Methanation. International Journal of Chemical Engineering, 2016, 2016, 1-7.	2.4	27
15	Threeâ€Dimensional NiMoO ₄ Nanosheets Supported on a Carbon Fibers@Preâ€Treated Ni Foam (CF@PNF) Substrate as Advanced Electrodes for Asymmetric Supercapacitors. Chemistry - an Asian Journal, 2015, 10, 1745-1752.	3.3	24
16	Surface Modification of Bituminous Coal and Its Effects on Methane Adsorption. Chinese Journal of Chemistry, 2013, 31, 1102-1108.	4.9	22
17	Catalytic Chemical Vapor Deposition of Methane to Carbon Nanotubes: Copper Promoted Effect of Ni/MgO Catalysts. Journal of Nanotechnology, 2014, 2014, 1-5.	3.4	18
18	Core–shell-structured MnO2@carbon spheres and nitrogen-doped activated carbon for asymmetric supercapacitors with enhanced energy density. Journal of Chemical Sciences, 2020, 132, 1.	1.5	18

Wen Yang

#	Article	IF	CITATIONS
19	Effect of Ca modification on the catalytic performance of Ni/AC for CO2methanation. Integrated Ferroelectrics, 2016, 172, 40-48.	0.7	16
20	Facile Synthesis of Nickel Cobalt Layered Double Hydroxide Nanosheets Intercalated with Sulfate Anion for High-Performance Supercapacitor. Journal of Nanoscience and Nanotechnology, 2020, 20, 1260-1268.	0.9	16
21	Sulfur-doped microporous carbons developed from coal for enhanced capacitive performances of supercapacitor electrodes. Integrated Ferroelectrics, 2018, 188, 44-56.	0.7	14
22	Suppressing capacity fading and voltage decay of Ni-rich cathode material by dual-ion doping for lithium-ion batteries. Journal of Materials Science, 2021, 56, 2347-2359.	3.7	14
23	A Study of CO ₂ Methanation over Ni-Based Catalysts Supported by CNTs with Various Textural Characteristics. International Journal of Chemical Engineering, 2015, 2015, 1-7.	2.4	13
24	Key Parameter Optimization for the Continuous Synthesis of Ni-Rich Ni–Co–Al Cathode Materials for Lithium-Ion Batteries. Industrial & Engineering Chemistry Research, 2020, 59, 22549-22558.	3.7	11
25	Nanoparticles-in-concavities as efficient nanocatalysts for carbon dioxide reforming of methane to hydrogen and syngas. Catalysis Science and Technology, 2016, 6, 4565-4576.	4.1	10
26	Contribution of Ash Content Related to Methane Adsorption Behaviors of Bituminous Coals. International Journal of Chemical Engineering, 2014, 2014, 1-11.	2.4	8
27	Catalytic Properties of Ni/CNTs and Ca-Promoted Ni/CNTs for Methanation Reaction of Carbon Dioxide. Advanced Materials Research, 0, 924, 217-226.	0.3	7
28	Hierarchical graphite oxide fabricated from graphite via electrochemical cleavage as an anode material for lithium ion batteries. RSC Advances, 2013, 3, 12758.	3.6	5
29	Synthesis of multi-walled carbon nanotubes using CoMnMgO catalysts through catalytic chemical vapor deposition. Chinese Physics B, 2014, 23, 128201.	1.4	5
30	Comparative Study of Textural Characteristics on Methane Adsorption for Carbon Spheres Produced by CO ₂ Activation. International Journal of Chemical Engineering, 2014, 2014, 1-7.	2.4	5
31	Open-Tip Carbon Nanotubes for Enhanced Methane Adsorption Performance: A Comparative Study. Journal of Nanotechnology, 2018, 2018, 1-8.	3.4	5
32	Powdered Multi-Walled Carbon Nanotubes Synthetized from Various Activated Carbon-Supported Catalysts and Their Methane Storage Performance. Nanoscience and Nanotechnology Letters, 2014, 6, 875-880.	0.4	4
33	CO ₂ methanation over NiCe/Al ₂ O ₃ catalysts: effect of nickel loading and particle size on catalytic performance. Ferroelectrics, 2020, 562, 10-16.	0.6	2
34	Textural and Fractal Characteristics of KOH-Activated Microporous Carbon Materials and their Carbon Dioxide Storage Performances. Advanced Materials Research, 0, 1118, 255-264.	0.3	0