
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4203971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel LiCoO2Cathode Material with Al2O3Coating for a Li Ion Cell. Chemistry of Materials, 2000, 12, 3788-3791.	3.2	599
2	Twoâ€Dimensional SnS ₂ Nanoplates with Extraordinary High Discharge Capacity for Lithium Ion Batteries. Advanced Materials, 2008, 20, 4269-4273.	11.1	521
3	Critical Size of a Nano SnO2Electrode for Li-Secondary Battery. Chemistry of Materials, 2005, 17, 3297-3301.	3.2	517
4	Preparation and Exceptional Lithium Anodic Performance of Porous Carbon-Coated ZnO Quantum Dots Derived from a Metal–Organic Framework. Journal of the American Chemical Society, 2013, 135, 7394-7397.	6.6	482
5	Zero-Strain Intercalation Cathode for Rechargeable Li-Ion Cell. Angewandte Chemie - International Edition, 2001, 40, 3367-3369.	7.2	441
6	A Breakthrough in the Safety of Lithium Secondary Batteries by Coating the Cathode Material with AlPO4 Nanoparticles. Angewandte Chemie - International Edition, 2003, 42, 1618-1621.	7.2	334
7	Novel SnS2-nanosheet anodes for lithium-ion batteries. Journal of Power Sources, 2007, 167, 529-535.	4.0	310
8	Twoâ€Ðimensional Nanosheet Crystals. Angewandte Chemie - International Edition, 2007, 46, 8828-8831.	7.2	308
9	LiCoO[sub 2] Cathode Material That Does Not Show a Phase Transition from Hexagonal to Monoclinic Phase. Journal of the Electrochemical Society, 2001, 148, A1110.	1.3	222
10	Synthesis, Thermal, and Electrochemical Properties of AlPO[sub 4]-Coated LiNi[sub 0.8]Co[sub 0.1]Mn[sub 0.1]O[sub 2] Cathode Materials for a Li-Ion Cell. Journal of the Electrochemical Society, 2004, 151, A1899.	1.3	195
11	Suppression of Cobalt Dissolution from the LiCoO[sub 2] Cathodes with Various Metal-Oxide Coatings. Journal of the Electrochemical Society, 2003, 150, A1723.	1.3	185
12	Ultrathin Zirconium Disulfide Nanodiscs. Journal of the American Chemical Society, 2011, 133, 7636-7639.	6.6	149
13	The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell. Current Applied Physics, 2012, 12, 737-741.	1.1	144
14	Optical and electronic properties of post-annealed ZnO:Al thin films. Applied Physics Letters, 2010, 96, .	1.5	140
15	A Mesoporous/Crystalline Composite Material Containing Tin Phosphate for Use as the Anode in Lithium-Ion Batteries. Angewandte Chemie - International Edition, 2004, 43, 5987-5990.	7.2	137
16	Electrochemical Stability of Thin-Film LiCoO2Cathodes by Aluminum-Oxide Coating. Chemistry of Materials, 2003, 15, 1505-1511.	3.2	132
17	High-Performance ZrO[sub 2]-Coated LiNiO[sub 2] Cathode Material. Electrochemical and Solid-State Letters, 2001, 4, A159.	2.2	127
18	Comparison of Overcharge Behavior of AlPO[sub 4]-Coated LiCoO[sub 2] and LiNi[sub 0.8]Co[sub 0.1]Mn[sub 0.1]O[sub 2] Cathode Materials in Li-Ion Cells. Journal of the Electrochemical Society, 151, A1707.	20 04 ,	118

#	Article	IF	CITATIONS
19	Comparison of Al2O3- and AlPO4-coated LiCoO2 cathode materials for a Li-ion cell. Journal of Power Sources, 2005, 146, 58-64.	4.0	117
20	The effect of a blocking layer on the photovoltaic performance in CdS quantum-dot-sensitized solar cells. Journal of Power Sources, 2011, 196, 10526-10531.	4.0	111
21	Preparation and electrochemical/thermal properties of LiNi0.74Co0.26O2 cathode material. Journal of Power Sources, 2001, 92, 35-39.	4.0	105
22	Hydroxyl-Quenching Effects on the Photoluminescence Properties of SnO2:Eu3+ Nanoparticles. Journal of Physical Chemistry C, 2007, 111, 4164-4167.	1.5	101
23	Electrochemical performance of amorphous-silicon thin films for lithium rechargeable batteries. Journal of Power Sources, 2006, 155, 391-394.	4.0	97
24	Effect of P2O5 and AlPO4 Coating on LiCoO2 Cathode Material. Chemistry of Materials, 2003, 15, 3190-3193.	3.2	89
25	The effects of 100 nm-diameter Au nanoparticles on dye-sensitized solar cells. Applied Physics Letters, 2011, 99, 253107.	1.5	83
26	Review paper: Toward highly efficient quantum-dot- and dye-sensitized solar cells. Current Applied Physics, 2013, 13, S2-S13.	1.1	83
27	Interfacial Modification and Defect Passivation by the Cross-Linking Interlayer for Efficient and Stable CuSCN-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 46818-46824.	4.0	82
28	Enhanced Structural Stability ofo-LiMnO2by Solâ^'Gel Coating of Al2O3. Chemistry of Materials, 2001, 13, 18-20.	3.2	79
29	Nanoparticle iron-phosphate anode material for Li-ion battery. Applied Physics Letters, 2004, 85, 5875-5877.	1.5	78
30	Effect of AlPO[sub 4]-Nanoparticle Coating Concentration on High-Cutoff-Voltage Electrochemical Performances in LiCoO[sub 2]. Journal of the Electrochemical Society, 2004, 151, A801.	1.3	78
31	Investigation of electronic and optical properties in Alâ^'Ga codoped ZnO thin films. Current Applied Physics, 2012, 12, 628-631.	1.1	78
32	Direct carbon-black coating on LiCoO2 cathode using surfactant for high-density Li-ion cell. Journal of Power Sources, 2005, 139, 289-294.	4.0	76
33	Effective wrapping of graphene on individual Li ₄ Ti ₅ O ₁₂ grains for high-rate Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 2023-2027.	5.2	76
34	Complete blocking of Mn3+ ion dissolution from a LiMn2O4 spinel intercalation compound by Co3O4 coating. Chemical Communications, 2001, , 1074-1075.	2.2	74
35	Mixture Behavior and Microwave Dielectric Properties in the Low-fired TiO2–CuO System. Japanese Journal of Applied Physics, 2000, 39, 2696-2700.	0.8	73
36	Origins of Efficient Perovskite Solar Cells with Low-Temperature Processed SnO ₂ Electron Transport Layer. ACS Applied Energy Materials, 2019, 2, 3554-3560.	2.5	73

#	Article	IF	CITATIONS
37	The Effect of Al[sub 2]O[sub 3] Coating on the Cycle Life Performance in Thin-Film LiCoO[sub 2] Cathodes. Journal of the Electrochemical Society, 2002, 149, A1337.	1.3	71
38	Synthesis and photoluminescence of Mn-doped zinc sulfide nanoparticles. Applied Physics Letters, 2007, 90, 101910.	1.5	70
39	The Effect of a Metal-Oxide Coating on the Cycling Behavior at 55°C in Orthorhombic LiMnO[sub 2] Cathode Materials. Journal of the Electrochemical Society, 2002, 149, A288.	1.3	69
40	Electrochemical Properties of Disordered-Carbon-Coated SnO[sub 2] Nanoparticles for Li Rechargeable Batteries. Electrochemical and Solid-State Letters, 2006, 9, A408.	2.2	68
41	The role of a TiCl4 treatment on the performance of CdS quantum-dot-sensitized solar cells. Journal of Power Sources, 2012, 220, 108-113.	4.0	67
42	Breathable Carbonâ€Free Electrode: Black TiO ₂ with Hierarchically Ordered Porous Structure for Stable Li–O ₂ Battery. Advanced Energy Materials, 2017, 7, 1700814.	10.2	65
43	Enhanced surface hardness by boron implantation in nitinol alloy. Journal of Endodontics, 1996, 22, 543-546.	1.4	63
44	The role of carbon incorporation in SnO2 nanoparticles for Li rechargeable batteries. Journal of Power Sources, 2012, 211, 154-160.	4.0	63
45	Electronic Traps and Their Correlations to Perovskite Solar Cell Performance via Compositional and Thermal Annealing Controls. ACS Applied Materials & Interfaces, 2019, 11, 6907-6917.	4.0	63
46	Recent Progress in Inorganic Hole Transport Materials for Efficient and Stable Perovskite Solar Cells. Electronic Materials Letters, 2019, 15, 505-524.	1.0	62
47	Correlation between local strain and cycle-life performance of AlPO4-coated LiCoO2 cathodes. Journal of Power Sources, 2004, 126, 190-192.	4.0	61
48	Microstructural Evolution of Hybrid Perovskites Promoted by Chlorine and its Impact on the Performance of Solar Cell. Scientific Reports, 2019, 9, 4803.	1.6	61
49	Analysis of a-Si:H/TCO contact resistance for the Si heterojunction back-contact solar cell. Solar Energy Materials and Solar Cells, 2014, 120, 412-416.	3.0	60
50	Photoluminescence enhancement in CdS nanoparticles by surface-plasmon resonance. Applied Physics Letters, 2011, 99, 041906.	1.5	59
51	Single-layer graphene-wrapped Li4Ti5O12 anode with superior lithium storage capability. Carbon, 2017, 114, 275-283.	5.4	59
52	Correlation between strain and dielectric properties in ZrTiO4 thin films. Applied Physics Letters, 2000, 76, 3043-3045.	1.5	58
53	The effect of Al2O3-coating coverage on the electrochemical properties in LiCoO2 thin films. Journal of Solid State Electrochemistry, 2010, 14, 1235-1240.	1.2	54
54	Photoluminescence enhancement in CdS quantum dots by thermal annealing. Nanoscale Research Letters, 2012, 7, 482.	3.1	54

#	Article	IF	CITATIONS
55	Evaluating the Optoelectronic Quality of Hybrid Perovskites by Conductive Atomic Force Microscopy with Noise Spectroscopy. ACS Applied Materials & amp; Interfaces, 2016, 8, 30985-30991.	4.0	54
56	From Nanostructural Evolution to Dynamic Interplay ofÂConstituents: Perspectives for Perovskite Solar Cells. Advanced Materials, 2018, 30, e1704208.	11.1	54
57	Synthesis and Growth Mechanisms of One-Dimensional Strontium Hydroxyapatite Nanostructures. Inorganic Chemistry, 2005, 44, 9895-9901.	1.9	53
58	Highly luminescent surface-passivated ZnS:Mn nanoparticles by a simple one-step synthesis. Applied Physics Letters, 2008, 93, .	1.5	53
59	Bandgap grading and Al0.3Ga0.7As heterojunction emitter for highly efficient GaAs-based solar cells. Solar Energy Materials and Solar Cells, 2016, 155, 264-272.	3.0	52
60	A Cu ₂ O–CuSCN Nanocomposite as a Hole-Transport Material of Perovskite Solar Cells for Enhanced Carrier Transport and Suppressed Interfacial Degradation. ACS Applied Energy Materials, 2020, 3, 7572-7579.	2.5	52
61	Development of fluctuations into domains during ordering inFe3Al. Physical Review Letters, 1992, 68, 1742-1745.	2.9	51
62	Wrapping SnO2 with porosity-tuned graphene as a strategy for high-rate performance in lithium battery anodes. Carbon, 2015, 85, 289-298.	5.4	51
63	An Aromatic Diamine Molecule as the <i>A</i> â€Site Solute for Highly Durable and Efficient Perovskite Solar Cells. Small Methods, 2019, 3, 1800361.	4.6	51
64	The Effect of AlPO[sub 4]-Coating Layer on the Electrochemical Properties in LiCoO[sub 2] Thin Films. Journal of the Electrochemical Society, 2006, 153, A1773.	1.3	50
65	Triamineâ€Based Aromatic Cation as a Novel Stabilizer for Efficient Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905190.	7.8	48
66	Solvent and Intermediate Phase as Boosters for the Perovskite Transformation and Solar Cell Performance. Scientific Reports, 2016, 6, 25648.	1.6	47
67	Microwave dielectric properties of (1 â~' x)Cu3Nb2O8â~'xZn3Nb2O8 ceramics. Journal of Materials Research, 2001, 16, 1465-1470.	1.2	46
68	Review paper: Semiconductor nanoparticles with surface passivation and surface plasmon. Electronic Materials Letters, 2011, 7, 185-194.	1.0	46
69	Graded bandgap structure for PbS/CdS/ZnS quantum-dot-sensitized solar cells with a PbxCd1â^'xS interlayer. Applied Physics Letters, 2013, 102, .	1.5	46
70	Electrochemical characteristics of Mg–Ni alloys as anode materials for secondary Li batteries. Journal of Power Sources, 2000, 90, 59-63.	4.0	45
71	Nanoscale interface control for high-performance Li-ion batteries. Electronic Materials Letters, 2012, 8, 91-105.	1.0	45
72	Development of carbon-based cathodes for Li-air batteries: Present and future. Electronic Materials Letters, 2016, 12, 551-567.	1.0	45

#	Article	IF	CITATIONS
73	Trigonal Na4Ti5O12Phase as an Intercalation Host for Rechargeable Batteries. Journal of the Electrochemical Society, 2012, 159, A2016-A2023.	1.3	44
74	Aminosilaneâ€Modified CuGaO ₂ Nanoparticles Incorporated with CuSCN as a Holeâ€Transport Layer for Efficient and Stable Perovskite Solar Cells. Advanced Materials Interfaces, 2019, 6, 1901372.	1.9	43
75	Effect of microstructures on the microwave dielectric properties of ZrTiO4 thin films. Applied Physics Letters, 2001, 78, 2363-2365.	1.5	41
76	Enhanced electrochemical properties of SnO2 anode by AlPO4 coating. Electrochimica Acta, 2004, 49, 4405-4410.	2.6	41
77	Investigation of chlorine-mediated microstructural evolution of CH3NH3PbI3(Cl) grains for high optoelectronic responses. Nano Energy, 2016, 25, 91-99.	8.2	41
78	Insights on the delithiation/lithiation reactions of Li Mn0.8Fe0.2PO4 mesocrystals in Li+ batteries by in situ techniques. Nano Energy, 2017, 39, 371-379.	8.2	41
79	Complementary surface modification by disordered carbon and reduced graphene oxide on SnO2 hollow spheres as an anode for Li-ion battery. Carbon, 2018, 129, 342-348.	5.4	41
80	Enhancement of the electrochemical properties of o-LiMnO2 cathodes at elevated temperature by lithium and fluorine additions. Journal of Power Sources, 2006, 154, 268-272.	4.0	40
81	Modification of Gold Catalysis with Aluminum Phosphate for Oxygen-Reduction Reaction. Journal of Physical Chemistry C, 2010, 114, 3688-3692.	1.5	40
82	Control of AlPO4-nanoparticle coating on LiCoO2 by using water or ethanol. Electrochimica Acta, 2005, 50, 4182-4187.	2.6	39
83	Annealing-Temperature Effect on Various Cutoff-Voltage Electrochemical Performances in AlPO[sub 4]-Nanoparticle-Coated LiCoO[sub 2]. Journal of the Electrochemical Society, 2005, 152, A32.	1.3	39
84	Uniform Cs2SnI6 Thin Films for Lead-Free and Stable Perovskite Optoelectronics via Hybrid Deposition Approaches. Electronic Materials Letters, 2019, 15, 192-200.	1.0	38
85	Quantitative analyses of damp-heat-induced degradation in transparent conducting oxides. Solar Energy Materials and Solar Cells, 2014, 122, 282-286.	3.0	37
86	The construction of tandem dye-sensitized solar cells from chemically-derived nanoporous photoelectrodes. Journal of Power Sources, 2015, 274, 937-942.	4.0	37
87	Effect of excess Bi2O3 on the ferroelectric properties of SrBi2Ta2O9 ceramics. Journal of Applied Physics, 2000, 88, 2825-2829.	1.1	35
88	Effect of Al[sub 2]O[sub 3]-Coated o-LiMnO[sub 2] Cathodes Prepared at Various Temperatures on the 55°C Cycling Behavior. Journal of the Electrochemical Society, 2002, 149, A127.	1.3	35
89	Surface-passivation effects on the photoluminescence enhancement in ZnS:Mn nanoparticles by ultraviolet irradiation with oxygen bubbling. Applied Physics Letters, 2010, 96, .	1.5	34
90	Epitaxial growth of Cu (001) on Si (001): Mechanisms of orientation development and defect morphology. Applied Physics Letters, 1993, 63, 2833-2835.	1.5	33

#	Article	IF	CITATIONS
91	Dielectric relaxation of atomic-layer-deposited HfO2 thin films from 1kHzto5GHz. Applied Physics Letters, 2005, 87, 012901.	1.5	33
92	CuCrO2 Nanoparticles Incorporated into PTAA as a Hole Transport Layer for 85 °C and Light Stabilities in Perovskite Solar Cells. Nanomaterials, 2020, 10, 1669.	1.9	33
93	Iron-phosphateâ^•platinumâ^•carbon nanocomposites for enhanced electrocatalytic stability. Applied Physics Letters, 2007, 91, 113101.	1.5	32
94	Reduced graphene oxide/carbon double-coated 3-D porous ZnO aggregates as high-performance Li-ion anode materials. Nanoscale Research Letters, 2015, 10, 204.	3.1	32
95	Xâ€ray measurements of ion mixing in amorphous Si/Ge artificial multilayers. Journal of Applied Physics, 1990, 68, 4556-4560.	1.1	31
96	Synthesis of metastable carbon-silicon-nitrogen compounds by ion implantation. Journal of Electronic Materials, 1996, 25, 23-26.	1.0	31
97	Silver-nanoparticle dispersion from the consolidation of Ag-attached silica colloid. Journal of Materials Research, 2004, 19, 1400-1407.	1.2	31
98	3D Meshlike Polyacrylamide Hydrogel as a Novel Binder System via in situ Polymerization for Highâ€Performance Siâ€Based Electrode. Advanced Materials Interfaces, 2020, 7, 1901475.	1.9	31
99	Changes in the Lattice Constants of Thin-Film LiCoO[sub 2] Cathodes at the 4.2 V Charged State. Journal of the Electrochemical Society, 2004, 151, A1063.	1.3	30
100	Metal-phosphate coating on LiCoO2 cathodes with high cutoff voltages. Materials Research Bulletin, 2007, 42, 1201-1211.	2.7	30
101	Ion-implantation modification of lithium–phosphorus oxynitride thin-films. Journal of Power Sources, 2002, 109, 214-219.	4.0	29
102	The effects of ruthenium-oxidation states on Ru dissolution in PtRu thin-film electrodes. Journal of Materials Research, 2009, 24, 2762-2766.	1.2	29
103	Nanostructured Platinum/Iron Phosphate Thin-Film Electrodes for Methanol Oxidation. Electrochemical and Solid-State Letters, 2006, 9, E27.	2.2	28
104	The dependence of dielectric properties on the thickness of (Ba,Sr)TiO3 thin films. Current Applied Physics, 2007, 7, 168-171.	1.1	28
105	Synchrotron-based x-ray absorption spectroscopy for the electronic structure of Li x Mn 0.8 Fe 0.2 PO 4 mesocrystal in Li + batteries. Nano Energy, 2017, 31, 495-503.	8.2	28
106	Surface-plasmon-enhanced photoluminescence of CdS nanoparticles with Au/SiO2 nanocomposites. Materials Research Bulletin, 2012, 47, 453-457.	2.7	27
107	Electronic transport and carrier concentration in conductive ZnO:Ga thin films. Current Applied Physics, 2013, 13, 415-418.	1.1	27
108	Incorporation of Lithium Fluoride Restraining Thermal Degradation and Photodegradation of Organometal Halide Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 50418-50425.	4.0	27

7

#	Article	IF	CITATIONS
109	Diffusivity of gold in amorphous silicon measured by the artificial multilayer technique. Applied Physics Letters, 1990, 56, 2094-2096.	1.5	26
110	The effect of nitrogen on the cycling performance in thin-film Silâ^'xNx anode. Journal of Solid State Chemistry, 2008, 181, 2139-2142.	1.4	26
111	Integration of CdSe/CdSexTe1â^'x Type-II Heterojunction Nanorods into Hierarchically Porous TiO2 Electrode for Efficient Solar Energy Conversion. Scientific Reports, 2015, 5, 17472.	1.6	26
112	Surface-plasmon resonance for photoluminescence and solar-cell applications. Electronic Materials Letters, 2012, 8, 351-364.	1.0	25
113	An effective oxidation approach for luminescence enhancement in CdS quantum dots by H2O2. Nanoscale Research Letters, 2012, 7, 672.	3.1	25
114	The role of ZnO-coating-layer thickness on the recombination in CdS quantum-dot-sensitized solar cells. Nano Energy, 2013, 2, 1218-1224.	8.2	25
115	Facile Conversion Synthesis of Densely-Formed Branched ZnO-Nanowire Arrays for Quantum-Dot-Sensitized Solar Cells. Electrochimica Acta, 2015, 167, 194-200.	2.6	25
116	Organic-acid texturing of transparent electrodes toward broadband light trapping in thin-film solar cells. Nano Energy, 2015, 17, 180-186.	8.2	24
117	Enhanced rate capability of LiMn0.9Mg0.1PO4 nanoplates by reduced graphene oxide/carbon double coating for Li-ion batteries. Current Applied Physics, 2014, 14, 725-730.	1.1	23
118	Methylammonium-chloride post-treatment on perovskite surface and its correlation to photovoltaic performance in the aspect of electronic traps. Journal of Applied Physics, 2019, 126, .	1.1	23
119	Crystallinity Dependence of Microwave Dielectric Properties in (Ba,Sr)TiO3Thin Films. Japanese Journal of Applied Physics, 2003, 42, 1315-1319.	0.8	22
120	Electrochemical properties of tin phosphates with various mesopore ratios. Journal of Power Sources, 2007, 172, 908-912.	4.0	22
121	Electronic Effect in Methanol Dehydrogenation on Pt Surfaces: Potential Control during Methanol Electrooxidation. Journal of Physical Chemistry Letters, 2013, 4, 2931-2936.	2.1	22
122	The effect of TiO2-coating layer on the performance in nanoporous ZnO-based dye-sensitized solar cells. Journal of Power Sources, 2013, 232, 159-164.	4.0	21
123	Oriented Hierarchical Porous TiO2 Nanowires on Ti Substrate: Evolution of Nanostructures for Dye-Sensitized Solar Cells. Electrochimica Acta, 2014, 145, 231-236.	2.6	21
124	Tailoring the Mesoscopic TiO2 Layer: Concomitant Parameters for Enabling High-Performance Perovskite Solar Cells. Nanoscale Research Letters, 2017, 12, 57.	3.1	21
125	Influence of the Microstructures on the Dielectric Properties of ZrTiO4Thin Films at Microwave-Frequency Range. Japanese Journal of Applied Physics, 2001, 40, 4599-4603.	0.8	20
126	Nanostructural Effect of AlPO[sub 4]-Nanoparticle Coating on the Cycle-Life Performance in LiCoO[sub 2] Thin Films. Electrochemical and Solid-State Letters, 2007, 10, A32.	2.2	20

#	Article	IF	CITATIONS
127	Suppression of structural degradation of LiNi0.9Co0.1O2 cathode at 90°C by AlPO4-nanoparticle coating. Current Applied Physics, 2007, 7, 172-175.	1.1	19
128	Synthesis of LiMn 0.8 Fe 0.2 PO 4 Mesocrystals for High-Performance Li-Ion Cathode Materials. Electrochimica Acta, 2016, 216, 203-210.	2.6	19
129	Electrochemical Promotion of Oxygen Reduction on Gold with Aluminum Phosphate Overlayer. Journal of Physical Chemistry C, 2011, 115, 7092-7096.	1.5	18
130	Recent advances in the transparent conducting ZnO for thin-film Si solar cells. Electronic Materials Letters, 2015, 11, 917-930.	1.0	18
131	Efficient Type-II Heterojunction Nanorod Sensitized Solar Cells Realized by Controlled Synthesis of Core/Patchy-Shell Structure and CdS Cosensitization. ACS Applied Materials & Interfaces, 2019, 11, 19104-19114.	4.0	18
132	Surface hardness enhancement in ionâ€implanted amorphous carbon. Journal of Applied Physics, 1996, 80, 1480-1484.	1.1	17
133	The effect of implantation temperature on the surface hardness, elastic modulus and Raman scattering in amorphous carbon. Applied Physics Letters, 1997, 70, 3104-3106.	1.5	17
134	Microwave dielectric relaxation of the polycrystalline (Ba,Sr)TiO3 thin films. Applied Physics Letters, 2005, 86, 182904.	1.5	17
135	Facile synthesis of porous-carbon/LiFePO4 nanocomposites. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	17
136	Synergetic effect of double-step blocking layer for the perovskite solar cell. Journal of Applied Physics, 2017, 122, .	1.1	17
137	Selective rear contact for Ga0.5In0.5P- and GaAs- based solar cells. Solar Energy Materials and Solar Cells, 2018, 182, 348-353.	3.0	17
138	Evaluation of graphene-wrapped LiFePO ₄ as novel cathode materials for Li-ion batteries. RSC Advances, 2016, 6, 105081-105086.	1.7	16
139	Photoconductive noise microscopy revealing quantitative effect of localized electronic traps on the perovskite-based solar cell performance. Nano Energy, 2018, 43, 29-36.	8.2	16
140	Dielectric Properties and Strain Analysis in Paraelectric ZrTiO4Thin Films Deposited by DC Magnetron Sputtering. Japanese Journal of Applied Physics, 2000, 39, 4153-4157.	0.8	15
141	Structural changes of Li3.1Mn0.91Cr1.09O4 cathode material. Solid State Ionics, 2001, 138, 221-225.	1.3	15
142	Surface–plasmon-coupled photoluminescence from CdS nanoparticles with Au films. Solid State Communications, 2012, 152, 1767-1770.	0.9	15
143	Selective removal of nanopores by triphenylphosphine treatment on the natural graphite anode. Electrochimica Acta, 2019, 326, 134993.	2.6	15
144	Metalâ€Coordination Mediated Polyacrylate for High Performance Silicon Microparticle Anode. Batteries and Supercaps, 2020, 3, 1287-1295.	2.4	15

#	Article	IF	CITATIONS
145	Nanostructural analysis of ZnO:Al thin films for carrier-transport mechanisms. Current Applied Physics, 2013, 13, 775-778.	1.1	14
146	Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Nanoscale Research Letters, 2014, 9, 295.	3.1	14
147	Route to Improving Photovoltaics Based on CdSe/CdSe _{<i>x</i>} Te _{1–<i>x</i>} Type-II Heterojunction Nanorods: The Effect of Morphology and Cosensitization on Carrier Recombination and Transport. ACS Applied Materials & Interfaces, 2017, 9, 31931-31939.	4.0	14
148	Ion-beam mixing in energetic collision cascades: Thermal-spike model and experiments. Journal of Materials Research, 1999, 14, 281-285.	1.2	13
149	Title is missing!. Angewandte Chemie, 2003, 115, 1656-1659.	1.6	13
150	Synergistic improvement of oxygen reduction reaction on gold/cerium-phosphate catalysts. International Journal of Hydrogen Energy, 2014, 39, 10921-10926.	3.8	13
151	Evolution of the Electronic Traps in Perovskite Photovoltaics during 1000 h at 85 °C. ACS Applied Energy Materials, 2022, 5, 7192-7198.	2.5	13
152	Methanol oxidation in nanostructured platinum/cerium-phosphate thin films. Current Applied Physics, 2011, 11, S2-S5.	1.1	12
153	A simple template-free †sputtering deposition and selective etching' process for nanoporous thin films and its application to dye-sensitized solar cells. Nanotechnology, 2013, 24, 365604.	1.3	12
154	Electrochemical stability in cerium-phosphate–coated LiCoO2 thin films. Journal of Materials Research, 2007, 22, 688-694.	1.2	11
155	Reaction mechanisms of tridymite iron phosphate with lithium ions in the low-voltage range. Electrochimica Acta, 2007, 53, 1843-1849.	2.6	11
156	Effects of iron-phosphate coating on Ru dissolution in the PtRu thin-film electrodes. Journal of Materials Research, 2009, 24, 140-144.	1.2	11
157	Nanoroughness control of Al-Doped ZnO for high efficiency Si thin-film solar cells. Current Applied Physics, 2015, 15, 1353-1357.	1.1	11
158	Hardness and Modulus Properties in Ion-beam-modified Amorphous Carbon: Temperature and Dose Rate Dependences. Journal of Materials Research, 1997, 12, 2057-2063.	1.2	10
159	Pt/AlPO4 nanocomposite thin-film electrodes for ethanol electrooxidation. Materials Chemistry and Physics, 2012, 135, 188-192.	2.0	10
160	Optimum Morphology of Mixed-Olivine Mesocrystals for a Li-Ion Battery. Inorganic Chemistry, 2018, 57, 5999-6009.	1.9	10
161	Comment on â€~â€~Calculation and simulation of chemical-diffusion coefficients: The inadequacy of the mean-field theory''. Physical Review Letters, 1992, 68, 1438-1438.	2.9	9
162	Effect of crystallinity on the dielectric loss of sputter-deposited (Ba,Sr)TiO ₃ thin films in the microwave range. Journal of Materials Research, 2003, 18, 682-686.	1.2	9

BYUNGWOO PARK

#	Article	IF	CITATIONS
163	Recent Progress in Carbon Electrodes for Efficient and Cost-Benign Perovskite Optoelectronics. Electronic Materials Letters, 2022, 18, 232-255.	1.0	9
164	The Loss Kinetics of Substitutional Carbon in Si1-xCxRegrown by Solid Phase Epitaxy. Japanese Journal of Applied Physics, 2001, 40, 773-776.	0.8	8
165	Solution Synthesis of Copper Microflowers. Electronic Materials Letters, 2009, 5, 201-204.	1.0	8
166	Mixed-Valence iron phosphate as an effective catalytic host for the High-Rate Lithium-Sulfur battery. Chemical Engineering Journal, 2022, 435, 134814.	6.6	8
167	Enhanced surface hardness in nitrogen-implanted silicon carbide. Nuclear Instruments & Methods in Physics Research B, 1996, 118, 693-697.	0.6	7
168	Phenomenological model of ion mixing by thermal spikes and activated processes. Journal of Applied Physics, 1997, 82, 4219-4222.	1.1	7
169	Thickness dependence of the ferroelectric PbTiO3 thin films on the dipolar relaxation in the microwave-frequency range. Applied Physics Letters, 2004, 85, 2328-2330.	1.5	7
170	Nanoporous Pt thin films with superior catalytic activities by the electrochemical dissolution of Al. Metals and Materials International, 2009, 15, 989-992.	1.8	7
171	Oxygen-Controlled Seed Layer in DC Sputter-Deposited ZnO:Al Substrate for Si Thin-Film Solar Cells. IEEE Journal of Photovoltaics, 2015, 5, 473-478.	1.5	7
172	The effect of ion implantation and solute atoms on the interdiffusion in amorphous Si/Ge multilayers. Journal of Applied Physics, 1991, 69, 6430-6436.	1.1	6
173	Kinetics of true mean-field Ising models and the Langevin equation: A comparison. Physical Review B, 1992, 46, 5079-5083.	1.1	6
174	Challenges in synthesizing carbon-coated LiFePO4 nanoparticles from hydrous FePO4 and their electrochemical properties. Materials Research Bulletin, 2012, 47, 3495-3498.	2.7	6
175	Photoluminescence Enhancement by Surface-Plasmon Resonance: Recombination-Rate Theory and Experiments. Applied Physics Express, 2013, 6, 052001.	1.1	6
176	Highly effective III-V solar cells by controlling the surface roughnesses. Current Applied Physics, 2020, 20, 899-903.	1.1	6
177	Identifying the Association between Surface Heterogeneity and Electrochemical Properties in Graphite. Nanomaterials, 2021, 11, 1813.	1.9	6
178	Model for Dopant-Induced Enhancement in Solid-Phase Epitaxial Recrystallization of Amorphous Si. Japanese Journal of Applied Physics, 1996, 35, L1611-L1613.	0.8	3
179	Critical Size of a Nano SnO2 Electrode for Li-Secondary Battery ChemInform, 2005, 36, no.	0.1	3
180	Enhanced Structural Stability of o-LiMnO2 by Solâ^'Gel Coating of Al2O3. , 0, , .		3

11

#	Article	IF	CITATIONS
181	Evaluation of structural reliability of mems device in digital video disk systems. Metals and Materials International, 1998, 4, 827-831.	0.2	2
182	Preface of ENGE 2010 special issue. Current Applied Physics, 2011, 11, S1.	1.1	2
183	The feasibility of forming superhard nitrides by ion implantation. Jom, 1995, 47, 49-51.	0.9	1
184	Order Re-Equilibration Kinetics within the B2 and \$f DO_{3}\$ Phases of \$f Fe_{3}Al\$. Japanese Journal of Applied Physics, 1996, 35, L1287-L1289.	0.8	1
185	Effect of P2O5 and AlPO4 Coating on LiCoO2 Cathode Material ChemInform, 2003, 34, no.	0.1	1
186	Improved measurement accuracy for the thickness of YBa2Cu3O7â ^{~1} δ films by using a single two-resonance-mode sapphire resonator. Journal of the Korean Physical Society, 2012, 60, 1072-1077.	0.3	1
187	Dielectric Properties Analysis in Paraelectric ZrTiO4 Thin Films. Materials Research Society Symposia Proceedings, 2001, 666, 371.	0.1	0
188	Electrochemical Stability of Thin-Film LiCoO3 Cathodes by Aluminum-Oxide Coating ChemInform, 2003, 34, no.	0.1	0
189	Cathodes Based on Lico02 and Lini02. , 2009, , 410-444.		0
190	Overcharge Behavior of Metal Oxide-Coated Cathode Materials. , 2009, , 1-33.		0
191	Selected Peer-Reviewed Articles from the International Conference on Electronic Materials and Nanotechnology for Green Environment (ENGE 2010). Journal of Nanoscience and Nanotechnology, 2012, 12, 3175-3176.	0.9	0
192	Next-Generation Electrocatalysts. , 2017, , 713-741.		0
193	Organometal Halide Perovskites: From Nanostructural Evolution to Dynamic Interplay ofAConstituents: Perspectives for Perovskite Solar Cells (Adv. Mater. 42/2018). Advanced Materials, 2018, 30, 1870313.	11.1	Ο