Beng Kang Tay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4203939/publications.pdf

Version: 2024-02-01

536 papers 22,670 citations

68 h-index 134 g-index

543 all docs

543 docs citations

543 times ranked 26300 citing authors

#	Article	IF	CITATIONS
1	From Bulk to Monolayer MoS ₂ : Evolution of Raman Scattering. Advanced Functional Materials, 2012, 22, 1385-1390.	7.8	3,354
2	Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials, 2014, 13, 1135-1142.	13.3	1,918
3	Chemical Vapor Deposition Growth of Crystalline Monolayer MoSe ₂ . ACS Nano, 2014, 8, 5125-5131.	7.3	694
4	Photoluminescence study of ZnO films prepared by thermal oxidation of Zn metallic films in air. Journal of Applied Physics, 2003, 94, 354-358.	1.1	385
5	Highly Sensitive Detection of Polarized Light Using Anisotropic 2D ReS ₂ . Advanced Functional Materials, 2016, 26, 1169-1177.	7.8	376
6	All Metal Nitrides Solid‧tate Asymmetric Supercapacitors. Advanced Materials, 2015, 27, 4566-4571.	11.1	371
7	Properties of carbon ion deposited tetrahedral amorphous carbon films as a function of ion energy. Journal of Applied Physics, 1996, 79, 7234-7240.	1.1	294
8	Electronic Properties of Bulk and Monolayer TMDs: Theoretical Study Within DFT Framework (GVJâ€2e) Tj ETQq0	0.0 _{.8} gBT	/Overlock 10
9	MoS ₂ /TiO ₂ Edgeâ€On Heterostructure for Efficient Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2016, 6, 1600464.	10.2	264
10	High Mobility 2D Palladium Diselenide Fieldâ€Effect Transistors with Tunable Ambipolar Characteristics. Advanced Materials, 2017, 29, 1602969.	11.1	251
11	High-Performance Microsupercapacitors Based on Two-Dimensional Graphene/Manganese Dioxide/Silver Nanowire Ternary Hybrid Film. ACS Nano, 2015, 9, 1528-1542.	7.3	222
12	Comprehensive study of ZnO films prepared by filtered cathodic vacuum arc at room temperature. Journal of Applied Physics, 2003, 94, 1597-1604.	1.1	211
13	Correlation between the Melting Point of a Nanosolid and the Cohesive Energy of a Surface Atom. Journal of Physical Chemistry B, 2002, 106, 10701-10705.	1.2	208
14	Polycrystalline ZnO thin films on Si (100) deposited by filtered cathodic vacuum arc. Journal of Crystal Growth, 2001, 223, 201-205.	0.7	207
15	In situ fabrication of three-dimensional, ultrathin graphite/carbon nanotube/NiO composite as binder-free electrode for high-performance energy storage. Journal of Materials Chemistry A, 2015, 3, 624-633.	5.2	200
16	NO2 gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interfacial polymerization. Sensors and Actuators B: Chemical, 2007, 123, 107-113.	4.0	188
17	Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon, 2009, 47, 1905-1910.	5.4	185
18	Ultrasensitive 2D Bi ₂ O ₂ Se Phototransistors on Silicon Substrates. Advanced Materials, 2019, 31, e1804945.	11.1	183

#	Article	IF	CITATIONS
19	Mechanical properties and Raman spectra of tetrahedral amorphous carbon films with high sp ³ fraction deposited using a filtered cathodic arc. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76, 351-361.	0.6	173
20	UV Raman characteristics of nanocrystalline diamond films with different grain size. Diamond and Related Materials, 2000, 9, 1979-1983.	1.8	165
21	A novel amperometric biosensor based on ZnO:Co nanoclusters for biosensing glucose. Biosensors and Bioelectronics, 2007, 23, 135-139.	5.3	165
22	Ultrafastâ€Charging Supercapacitors Based on Cornâ€Like Titanium Nitride Nanostructures. Advanced Science, 2016, 3, 1500299.	5.6	163
23	Engineering grain boundaries at theÂ2D limit for theÂhydrogen evolution reaction. Nature Communications, 2020, 11, 57.	5.8	153
24	Structural, electrical and optical properties of Al-doped ZnO thin films prepared by filtered cathodic vacuum arc technique. Journal of Crystal Growth, 2004, 268, 596-601.	0.7	150
25	Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime. Light: Science and Applications, 2019, 8, 9.	7.7	150
26	Carbon nanotube–ZnO nanocomposite electrodes for supercapacitors. Solid State Ionics, 2009, 180, 1525-1528.	1.3	142
27	A three dimensional vertically aligned multiwall carbon nanotube/NiCo ₂ O ₄ core/shell structure for novel high-performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 5100-5107.	5.2	142
28	Transparent and flexible glucose biosensor via layer-by-layer assembly of multi-wall carbon nanotubes and glucose oxidase. Electrochemistry Communications, 2007, 9, 1269-1275.	2.3	141
29	Stacking-Dependent Interlayer Coupling in Trilayer MoS ₂ with Broken Inversion Symmetry. Nano Letters, 2015, 15, 8155-8161.	4.5	141
30	Preparation and characterization of copper oxide thin films deposited by filtered cathodic vacuum arc. Journal Physics D: Applied Physics, 2004, 37, 81-85.	1.3	137
31	Spin-Orbit Splitting in Single-Layer <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><mml:mn></mml:mn></mml:msub></mml:math> Reveale by Triply Resonant Raman Scattering. Physical Review Letters, 2013, 111, 126801.	d2.9	137
32	Three-dimensional Ni(OH)2 nanoflakes/graphene/nickel foam electrode with high rate capability for supercapacitor applications. International Journal of Hydrogen Energy, 2014, 39, 7876-7884.	3.8	136
33	Paper-based all-solid-state flexible micro-supercapacitors with ultra-high rate and rapid frequency response capabilities. Journal of Materials Chemistry A, 2016, 4, 3754-3764.	5.2	136
34	Tribological properties and adhesive strength of DLC coatings prepared under different substrate bias voltages. Wear, 2001, 249, 433-439.	1.5	131
35	Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing. Journal of Crystal Growth, 2003, 259, 335-342.	0.7	129
36	Bond-orderÂbond-lengthÂbond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid. Journal of Physics Condensed Matter, 2002, 14, 7781-7795.	0.7	125

#	Article	IF	CITATIONS
37	Growth, structural, and magnetic properties of iron nitride thin films deposited by dc magnetron sputtering. Applied Surface Science, 2003, 220, 30-39.	3.1	120
38	Electrowetting Control of Cassie-to-Wenzel Transitions in Superhydrophobic Carbon Nanotube-Based Nanocomposites. ACS Nano, 2009, 3, 3031-3036.	7.3	120
39	Raman studies of tetrahedral amorphous carbon films deposited by filtered cathodic vacuum arc. Surface and Coatings Technology, 1998, 105, 155-158.	2.2	116
40	Tailoring MoS ₂ Exciton–Plasmon Interaction by Optical Spin–Orbit Coupling. ACS Nano, 2017, 11, 1165-1171.	7.3	114
41	Carbon nanotube–zinc oxide electrode and gel polymer electrolyte for electrochemical supercapacitors. Journal of Alloys and Compounds, 2009, 480, L17-L19.	2.8	112
42	A binder-free CNT network–MoS ₂ composite as a high performance anode material in lithium ion batteries. Chemical Communications, 2014, 50, 3338-3340.	2.2	111
43	Dimension, Strength, and Chemical and Thermal Stability of a Single Câ^'C Bond in Carbon Nanotubes. Journal of Physical Chemistry B, 2003, 107, 7544-7546.	1.2	109
44	Review of metal oxide films deposited by filtered cathodic vacuum arc technique. Materials Science and Engineering Reports, 2006, 52, 1-48.	14.8	109
45	Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light–Matter Interactions. Advanced Materials, 2015, 27, 7800-7808.	11.1	109
46	Fabrication of Carbon Nanotubeâ^Polyaniline Composites via Electrostatic Adsorption in Aqueous Colloids. Journal of Physical Chemistry C, 2007, 111, 4125-4131.	1.5	107
47	Van der Waals p–n Junction Based on an Organic–Inorganic Heterostructure. Advanced Functional Materials, 2015, 25, 5865-5871.	7.8	98
48	Field emission from ordered carbon nanotube-ZnO heterojunction arrays. Carbon, 2008, 46, 753-758.	5.4	97
49	Hard carbon nanocomposite films with low stress. Diamond and Related Materials, 2001, 10, 1082-1087.	1.8	91
50	Dispersing and Functionalizing Multiwalled Carbon Nanotubes in TiO2Sol. Journal of Physical Chemistry B, 2006, 110, 25844-25849.	1.2	91
51	Properties of fluorinated amorphous diamond like carbon films by PECVD. Applied Surface Science, 2003, 219, 228-237.	3.1	89
52	A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation. Applied Physics Letters, 2008, 93, .	1.5	88
53	Substrate bias dependence of Raman spectra for TiN films deposited by filtered cathodic vacuum arc. Journal of Applied Physics, 2002, 92, 1845-1849.	1.1	87
54	Bond contraction and lone pair interaction at nitride surfaces. Journal of Applied Physics, 2001, 90, 2615-2617.	1.1	85

#	Article	IF	CITATIONS
55	Effect of film thickness on the stress and adhesion of diamond-like carbon coatings. Diamond and Related Materials, 2002, 11, 1643-1647.	1.8	84
56	Growth and characterization of zinc oxide nano/micro-fibers by thermal chemical reactions and vapor transport deposition in air. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 103-107.	1.3	84
57	Tribological characterisation of diamond-like carbon coatings on Co–Cr–Mo alloy for orthopaedic applications. Surface and Coatings Technology, 2001, 146-147, 410-416.	2.2	83
58	An extended 'quantum confinement' theory: surface-coordination imperfection modifies the entire band structure of a nanosolid. Journal Physics D: Applied Physics, 2001, 34, 3470-3479.	1.3	82
59	Abrupt Stress Induced Transformation in Amorphous Carbon Films with a Highly Conductive Transition Phase. Physical Review Letters, 2008, 100, 176101.	2.9	81
60	Coordination Imperfection Suppressed Phase Stability of Ferromagnetic, Ferroelectric, and Superconductive Nanosolids. Journal of Physical Chemistry B, 2004, 108, 1080-1084.	1.2	78
61	An Asymmetric Supercapacitor with Both Ultra-High Gravimetric and Volumetric Energy Density Based on 3D Ni(OH) ₂ /MnO ₂ @Carbon Nanotube and Activated Polyaniline-Derived Carbon. ACS Applied Materials & Derived Carbon. ACS Applied Carbon. ACS Appli	4.0	78
62	Metal-containing amorphous carbon films for hydrophobic application. Thin Solid Films, 2001, 398-399, 110-115.	0.8	76
63	Evolution of visible luminescence in ZnO by thermal oxidation of zinc films. Chemical Physics Letters, 2003, 375, 113-118.	1.2	75
64	Thermal conductivity of individual multiwalled carbon nanotubes. International Journal of Thermal Sciences, 2012, 62, 40-43.	2.6	75
65	Refractive indices of textured indium tin oxide and zinc oxide thin films. Thin Solid Films, 2006, 510, 95-101.	0.8	74
66	Structural and tribological characterization of multilayer ta-C films prepared by filtered cathodic vacuum arc with substrate pulse biasing. Surface and Coatings Technology, 2000, 132, 228-232.	2.2	73
67	THE DOUBLE BEND FILTERED CATHODIC ARC TECHNOLOGY AND ITS APPLICATIONS. International Journal of Modern Physics B, 2000, 14, 136-153.	1.0	73
68	Transport of vacuum arc plasma through an off-plane double bend filtering duct. Thin Solid Films, 1999, 345, 1-6.	0.8	72
69	Thermal conductivity of titanium nitride/titanium aluminum nitride multilayer coatings deposited by lateral rotating cathode arc. Thin Solid Films, 2015, 578, 133-138.	0.8	72
70	Twinned Zn2TiO4 Spinel Nanowires Using ZnO Nanowires as a Template. Advanced Materials, 2007, 19, 1839-1844.	11.1	70
71	Enhanced field emission from injector-like ZnO nanostructures with minimized screening effect. Nanotechnology, 2007, 18, 135604.	1.3	68
72	High performance carbon nanotube–Si core–shell wires with a rationally structured core for lithium ion battery anodes. Nanoscale, 2013, 5, 1503.	2.8	66

#	Article	IF	Citations
73	Localized emission from laser-irradiated defects in 2D hexagonal boron nitride. 2D Materials, 2018, 5, 015010.	2.0	65
74	Structural and mechanical properties of nitrogen ion implanted ultra high molecular weight polyethylene. Surface and Coatings Technology, 2001, 138, 33-38.	2.2	60
75	Periodically Aligned Si Nanopillar Arrays as Efficient Antireflection Layers for Solar Cell Applications. Nanoscale Research Letters, 2010, 5, 1721-1726.	3.1	60
76	Structural and optical properties of ZnO thin films produced by filtered cathodic vacuum arc. Thin Solid Films, 2001, 398-399, 244-249.	0.8	57
77	Resonant Raman scattering studies of Fano-type interference in boron doped diamond. Journal of Applied Physics, 2002, 92, 7253-7256.	1.1	56
78	Ultraviolet amplified spontaneous emission from zinc oxide ridge waveguides on silicon substrate. Applied Physics Letters, 2003, 83, 4288-4290.	1.5	56
79	Quenching of surface-exciton emission from ZnO nanocombs by plasma immersion ion implantation. Applied Physics Letters, 2007, 91, .	1.5	55
80	Ultraviolet and visible Raman studies of nitrogenated tetrahedral amorphous carbon films. Thin Solid Films, 2000, 366, 169-174.	0.8	54
81	Tribological characterization of surface modified UHMWPE against DLC-coated Co–Cr–Mo. Surface and Coatings Technology, 2005, 190, 231-237.	2.2	54
82	The hysteresis phenomenon of the field emission from the graphene film. Applied Physics Letters, 2011, 99, 173104.	1.5	54
83	Large magnetic moment observed in Co-doped ZnO nanocluster-assembled thin films at room temperature. Applied Physics Letters, 2007, 90, 152502.	1.5	53
84	Carbon nanotube films prepared by thermal chemical vapor deposition at low temperature for field emission applications. Applied Physics Letters, 2001, 79, 1670-1672.	1.5	51
85	Mechanisms for the behavior of carbon films during annealing. Physical Review B, 2004, 70, .	1.1	51
86	Superhydrophobic amorphous carbon/carbon nanotube nanocomposites. Applied Physics Letters, 2009, 94, .	1.5	51
87	Microstructure and mechanical properties of nanocomposite amorphous carbon films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1390-1394.	0.9	50
88	Observations of nitrogen-related photoluminescence bands from nitrogen-doped ZnO films. Journal of Crystal Growth, 2003, 252, 265-269.	0.7	50
89	Room-temperature deposition of amorphous titanium dioxide thin film with high refractive index by a filtered cathodic vacuum arc technique. Applied Optics, 2004, 43, 1281.	2.1	50
90	Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials. Carbon, 2019, 145, 725-733.	5.4	50

#	Article	IF	Citations
91	Dependence of electrical and optical properties of ZnO films on substrate temperature. Materials Science in Semiconductor Processing, 2001, 4, 617-620.	1.9	49
92	Size Dependence of the 2p-Level Shift of Nanosolid Silicon. Journal of Physical Chemistry B, 2003, 107, 5113-5115.	1.2	49
93	Raman spectroscopy study of DLC films prepared by RF plasma and filtered cathodic arc. Surface and Coatings Technology, 2007, 201, 6734-6736.	2.2	49
94	The structure of tetrahedral amorphous carbon thin films. Thin Solid Films, 1996, 290-291, 317-322.	0.8	48
95	Fabrication of silicon pyramid/nanowire binary structure with superhydrophobicity. Applied Surface Science, 2009, 255, 7147-7152.	3.1	48
96	Manipulating Coherent Light–Matter Interaction: Continuous Transition between Strong Coupling and Weak Coupling in MoS ₂ Monolayer Coupled with Plasmonic Nanocavities. Advanced Optical Materials, 2019, 7, 1900857.	3.6	48
97	Field emission from undoped and nitrogen-doped tetrahedral amorphous carbon film prepared by filtered cathodic vacuum arc technique. Diamond and Related Materials, 1998, 7, 640-644.	1.8	47
98	Resonant Raman studies of tetrahedral amorphous carbon films. Diamond and Related Materials, 2001, 10, 76-81.	1.8	47
99	Dielectric suppression and its effect on photoabsorption of nanometric semiconductors. Journal Physics D: Applied Physics, 2001, 34, 2359-2362.	1.3	47
100	Rapid fabrication of a novel Sn–Ge alloy: structure–property relationship and its enhanced lithium storage properties. Journal of Materials Chemistry A, 2013, 1, 14577.	5.2	47
101	Enhanced thermoelectric properties of n-type Bi2Te2.7Se0.3 thin films through the introduction of Pt nanoinclusions by pulsed laser deposition. Nano Energy, 2014, 8, 223-230.	8.2	46
102	The effect of deposition conditions on the properties of TiN thin films prepared by filtered cathodic vacuum-arc technique. Surface and Coatings Technology, 1999, 111, 229-233.	2.2	45
103	Internal stress and surface morphology of zinc oxide thin films deposited by filtered cathodic vacuum arc technique. Thin Solid Films, 2004, 458, 15-19.	0.8	44
104	Feasibility of diamond-like carbon coatings for orthopaedic applications. Diamond and Related Materials, 2004, 13, 184-190.	1.8	44
105	Fabrication of Three-Dimensional ZnOâ´'Carbon Nanotube (CNT) Hybrids Using Self-Assembled CNT Micropatterns as Framework. Journal of Physical Chemistry C, 2007, 111, 17254-17259.	1.5	44
106	A Carbon Nanomattress: A New Nanosystem with Intrinsic, Tunable, Damping Properties. Advanced Materials, 2007, 19, 2941-2945.	11,1	44
107	Spectroscopic ellipsometry studies of tetrahedral amorphous carbon prepared by filtered cathodic vacuum arc technique. Thin Solid Films, 1998, 312, 160-169.	0.8	43
108	Electron field emission properties of tetrahedral amorphous carbon films. Journal of Applied Physics, 1999, 85, 6816-6821.	1.1	43

#	Article	IF	CITATIONS
109	Photoluminescence of Si Nanosolids near the Lower End of the Size Limit. Journal of Physical Chemistry B, 2002, 106, 11725-11727.	1.2	43
110	Upper limit of blue shift in the photoluminescence of CdSe and CdS nanosolids. Acta Materialia, 2002, 50, 4687-4693.	3.8	43
111	Tribological characterization of diamond-like carbon (DLC) coatings sliding against DLC coatings. Diamond and Related Materials, 2003, 12, 1389-1395.	1.8	42
112	Simulation of plasma flow in toroidal solenoid filters. IEEE Transactions on Plasma Science, 1996, 24, 1309-1318.	0.6	41
113	Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions. Journal of Applied Physics, 1999, 86, 6078-6083.	1.1	41
114	Blue electroluminescence from tris-(8-hydroxyquinoline) aluminum thin film. Chemical Physics Letters, 2000, 325, 420-424.	1.2	41
115	Low stress thick diamond-like carbon films prepared by filtered arc deposition for tribological applications. Surface and Coatings Technology, 2002, 154, 289-293.	2.2	41
116	Core–shell CNT–Ni–Si nanowires as a high performance anode material for lithium ion batteries. Carbon, 2013, 63, 54-60.	5.4	41
117	Theoretical study of defect impact on two-dimensional MoS ₂ . Journal of Semiconductors, 2015, 36, 122002.	2.0	41
118	Tribological behaviour of different diamond-like carbon materials. Surface and Coatings Technology, 1998, 106, 72-80.	2.2	40
119	The effect of nitrogen on the mechanical properties of tetrahedral amorphous carbon films deposited with a filtered cathodic vacuum arc. Surface and Coatings Technology, 1999, 120-121, 601-606.	2.2	40
120	Breaking limit of atomic distance in an impurity-free monatomic chain. Physical Review B, 2004, 69, .	1,1	40
121	Dielectric suppression of nanosolid silicon. Nanotechnology, 2004, 15, 1802-1806.	1.3	40
122	Phonon localization around vacancies in graphene nanoribbons. Diamond and Related Materials, 2012, 23, 88-92.	1.8	40
123	MoS ₂ /Rubrene van der Waals Heterostructure: Toward Ambipolar Fieldâ€Effect Transistors and Inverter Circuits. Small, 2017, 13, 1602558.	5.2	40
124	Ultraviolet lasing of ZnO whiskers prepared by catalyst-free thermal evaporation. Chemical Physics Letters, 2003, 377, 329-332.	1.2	39
125	Electronic transport properties of nitrogen doped amorphous carbon films deposited by the filtered cathodic vacuum arc technique. Journal of Physics Condensed Matter, 1998, 10, 9293-9302.	0.7	38
126	Modulating the work function of carbon by N or O addition and nanotip fabrication. Solid State Communications, 2003, 128, 381-384.	0.9	38

#	Article	IF	Citations
127	Synthesis of silicon carbide nitride nanocomposite films by a simple electrochemical method. Electrochemistry Communications, 2006, 8, 737-740.	2.3	38
128	Length, Strength, Extensibility, and Thermal Stability of a Auâ^'Au Bond in the Gold Monatomic Chain. Journal of Physical Chemistry B, 2004, 108, 2162-2167.	1.2	37
129	Optical properties of nanocluster-assembled ZnO thin films by nanocluster-beam deposition. Applied Physics Letters, 2005, 87, 251912.	1.5	37
130	Revealing the surface origin of green band emission from ZnO nanostructures by plasma immersion ion implantation induced quenching. Journal of Applied Physics, 2008, 103, .	1.1	37
131	On the properties of nanocomposite amorphous carbon films prepared by off-plane double bend filtered cathodic vacuum arc. Thin Solid Films, 2002, 420-421, 177-184.	0.8	36
132	Fluorinated amorphous diamond-like carbon films deposited by plasma-enhanced chemical vapor deposition. Surface and Coatings Technology, 2005, 191, 236-241.	2.2	36
133	Electron field emission from surface treated tetrahedral amorphous carbon films. Applied Physics Letters, 1999, 74, 833-835.	1.5	35
134	Mechanical and tribological characterization of diamond-like carbon coatings on orthopedic materials. Diamond and Related Materials, 2001, 10, 1043-1048.	1.8	35
135	Structural and electrical properties of copper thin films prepared by filtered cathodic vacuum arc technique. Surface and Coatings Technology, 2001, 138, 250-255.	2.2	35
136	A Highâ€Performance Anode Material for Li″on Batteries Based on a Vertically Aligned CNTs/NiCo ₂ O ₄ Core/Shell Structure. Particle and Particle Systems Characterization, 2014, 31, 1151-1157.	1.2	35
137	Investigation of tetrahedral amorphous carbon films using x-ray photoelectron and Raman spectroscopy. Surface and Interface Analysis, 1999, 28, 231-234.	0.8	34
138	Ni–NiO core-shell nanoclusters with cubic shape by nanocluster beam deposition. Applied Physics Letters, 2007, 90, 043111.	1.5	34
139	Plasma density induced formation of nanocrystals in physical vapor deposited carbon films. Carbon, 2011, 49, 1733-1744.	5.4	34
140	Surface energy of metal containing amorphous carbon films deposited by filtered cathodic vacuum arc. Diamond and Related Materials, 2004, 13, 459-464.	1.8	33
141	Band-gap expansion, core-level shift, and dielectric suppression of porous silicon passivated by plasma fluorination. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 583.	1.6	33
142	Atomistic origin and temperature dependence of Raman optical redshift in nanostructures: a broken bond rule. Journal of Raman Spectroscopy, 2007, 38, 780-788.	1.2	33
143	Design and Implementation of Ternary Logic Integrated Circuits by Using Novel Two-Dimensional Materials. Applied Sciences (Switzerland), 2019, 9, 4212.	1.3	33
144	Properties and structures of diamond-like carbon film deposited using He, Ne, Ar/methane mixture by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2000, 87, 8122-8131.	1.1	32

#	Article	IF	CITATIONS
145	Raman spectroscopy of carbon nitride films deposited using the filtered cathodic vacuum-arc technique combined with a radio-frequency nitrogen-ion beam. Applied Physics A: Materials Science and Processing, 2001, 73, 341-345.	1.1	32
146	Surface energy of amorphous carbon films containing iron. Journal of Applied Physics, 2001, 89, 7814-7819.	1.1	32
147	Structural and mechanical properties of Ti-containing diamond-like carbon films deposited by filtered cathodic vacuum arc. Thin Solid Films, 2002, 408, 183-187.	0.8	32
148	On stress reduction of tetrahedral amorphous carbon films for moving mechanical assemblies. Diamond and Related Materials, 2003, 12, 185-194.	1.8	32
149	Microstructural and optical properties of aluminum oxide thin films prepared by off-plane filtered cathodic vacuum arc system. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 906-910.	0.9	32
150	Study of mechanical properties and stress of tetrahedral amorphous carbon films prepared by pulse biasing. Surface and Coatings Technology, 2005, 195, 338-343.	2.2	32
151	Effects of substrate temperature on the properties of tetrahedral amorphous carbon films. Thin Solid Films, 1999, 346, 155-161.	0.8	31
152	Effect of frequency and pulse width on the properties of ta:C films prepared by FCVA together with substrate pulse biasing. Thin Solid Films, 2002, 420-421, 62-69.	0.8	31
153	Study of surface energy of tetrahedral amorphous carbon films modified in various gas plasma. Diamond and Related Materials, 2003, 12, 2072-2076.	1.8	31
154	Electron emission of carbon nitride films and mechanism for the nitrogen-lowered threshold in cold cathode. Journal of Applied Physics, 2003, 94, 2741-2745.	1.1	31
155	On the deposition mechanism of a-C:H films by plasma enhanced chemical vapor deposition. Surface and Coatings Technology, 2000, 135, 27-33.	2.2	30
156	Development of texture in TiN films deposited by filtered cathodic vacuum arc. Journal of Crystal Growth, 2003, 252, 257-264.	0.7	30
157	Study of the structure and optical properties of nanocrystalline zirconium oxide thin films deposited at low temperatures. Journal Physics D: Applied Physics, 2004, 37, 1701-1705.	1.3	30
158	Formation and assembly of carbon nanotube bumps for interconnection applications. Diamond and Related Materials, 2009, 18, 1109-1113.	1.8	30
159	Preferential orientation of titanium carbide films deposited by a filtered cathodic vacuum arc technique. Surface and Coatings Technology, 2001, 138, 301-306.	2.2	29
160	Influence of substrate bias on the structure and properties of (Ti, Al)N films deposited by filtered cathodic vacuum arc. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 736-742.	0.9	29
161	Effects of N ion energy on titanium nitride films deposited by ion assisted filtered cathodic vacuum arc. Chemical Physics Letters, 2003, 374, 264-270.	1.2	29
162	A comparative study between pure and Al-containing amorphous carbon films prepared by FCVA technique together with high substrate pulse biasing. Diamond and Related Materials, 2003, 12, 2032-2036.	1.8	29

#	Article	IF	Citations
163	Fabrication of ITO thin films by filtered cathodic vacuum arc deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 106, 300-304.	1.7	29
164	Optical properties of titania films prepared by off-plane filtered cathodic vacuum arc. Journal of Crystal Growth, 2004, 268, 543-546.	0.7	29
165	Field emission enhancement and microstructural changes of carbon films by single pulse laser irradiation. Carbon, 2011, 49, 1018-1024.	5.4	29
166	Mesoscopic Model for the Electromagnetic Properties of Arrays of Nanotubes and Nanowires: A Bulk Equivalent Approach. IEEE Nanotechnology Magazine, 2012, 11, 964-974.	1.1	29
167	Carbon nanotube bumps for the flip chip packaging system. Nanoscale Research Letters, 2012, 7, 105.	3.1	29
168	Novel three-dimensional carbon nanotube networks as high performance thermal interface materials. Carbon, 2018, 132, 359-369.	5.4	29
169	Field emission from modified nanocomposite carbon films prepared by filtered cathodic vacuum arc at high negative pulsed bias. Applied Surface Science, 2003, 214, 351-358.	3.1	28
170	Structural properties and nanoindentation of AlN films by a filtered cathodic vacuum arc at low temperature. Journal Physics D: Applied Physics, 2004, 37, 1472-1477.	1.3	28
171	Multilayer assembly of positively charged polyelectrolyte and negatively charged glucose oxidase on a 3D Nafion network for detecting glucose. Biosensors and Bioelectronics, 2007, 22, 3256-3260.	5.3	28
172	Influence of deposition temperature on the structure and internal stress of TiN films deposited by filtered cathodic vacuum arc. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1270-1274.	0.9	27
173	Optical properties of aluminium oxide thin films prepared at room temperature by off-plane filtered cathodic vacuum arc system. Thin Solid Films, 2004, 447-448, 14-19.	0.8	27
174	Synthesis, morphology and random laser action of ZnO nanostructures. Surface Science, 2007, 601, 2660-2663.	0.8	27
175	Optical properties of tetrahedral amorphous carbon films determined by spectroscopic ellipsometry. Thin Solid Films, 1997, 308-309, 268-272.	0.8	26
176	Growth conditions and properties of tetrahedral amorphous carbon films. Thin Solid Films, 1997, 308-309, 199-203.	0.8	26
177	Characterization of filtered cathodic vacuum arc system. Surface and Coatings Technology, 1997, 94-95, 195-200.	2.2	26
178	Modification of tetrahedral amorphous carbon film by concurrent Ar ion bombardment during deposition. Surface and Coatings Technology, 1998, 105, 91-96.	2.2	26
179	Time and temperature-dependent changes in the structural properties of tetrahedral amorphous carbon films. Surface and Coatings Technology, 2000, 130, 248-251.	2.2	26
180	Effects of a grain boundary loop on the thermal conductivity of graphene: A molecular dynamics study. Computational Materials Science, 2013, 79, 132-135.	1.4	26

#	Article	IF	CITATIONS
181	Curie temperature suppression of ferromagnetic nanosolids. Journal of Physics Condensed Matter, 2002, 14, L399-L405.	0.7	25
182	Discriminating Crystal Binding from the Atomic Trapping of a Core Electron at Energy Levels Shifted by Surface Relaxation or Nanosolid Formation. Journal of Physical Chemistry B, 2003, 107, 411-414.	1.2	25
183	Reâ€ordering Chaotic Carbon: Origins and Application of Textured Carbon. Advanced Materials, 2012, 24, 4112-4123.	11.1	25
184	On the upper limit of content in tetrahedral amorphous carbon film. Journal of Physics Condensed Matter, 1999, 11, 185-189.	0.7	24
185	Deposition of iron containing amorphous carbon films by filtered cathodic vacuum arc technique. Diamond and Related Materials, 2001, 10, 2018-2023.	1.8	24
186	Synthesis of Superhard and Elastic Carbon Nitride Films by Filtered Cathodic Vacuum arc Combined with Radio Frequency Ion Beam Source. Journal of Materials Research, 2002, 17, 521-524.	1.2	24
187	Size-effect on the electronic structure and the thermal stability of a gold nanosolid. Acta Materialia, 2004, 52, 501-505.	3.8	24
188	Mechanical properties of alternating high-low sp3 content thick non-hydrogenated diamond-like amorphous carbon films. Diamond and Related Materials, 2007, 16, 1882-1886.	1.8	24
189	Quantitative, nanoscale mapping of sp2 percentage and crystal orientation in carbon multilayers. Carbon, 2009, 47, 94-101.	5. 4	24
190	Growth of few-wall carbon nanotubes with narrow diameter distribution over Fe-Mo-MgO catalyst by methane/acetylene catalytic decomposition. Nanoscale Research Letters, 2012, 7, 102.	3.1	24
191	Fabrication of Double-Walled Titania Nanotubes and Their Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2014, 2, 991-995.	3.2	24
192	Field emission from nitrogen doped tetrahedral amorphous carbon prepared by filtered cathodic vacuum arc technique. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1998, 16, 2049.	1.6	23
193	Electrical behaviour of metal/tetrahedral amorphous carbon/metal structure. Solid-State Electronics, 1999, 43, 427-434.	0.8	23
194	Oxidation and ion migration during synthesis and degradation of electroactive polymer–nylon 6 composite films. Polymer, 2000, 41, 9-15.	1.8	23
195	Characterization of ta-C films prepared by a two-step filtered vacuum arc deposition technique. Surface and Coatings Technology, 2000, 127, 246-250.	2.2	23
196	Electron field emission from Ti-containing tetrahedral amorphous carbon films deposited by filtered cathodic vacuum arc. Journal of Applied Physics, 2000, 88, 6842-6847.	1.1	23
197	Improving diamond–metal adhesion with graded TiCN interlayers. Journal of Applied Physics, 2002, 91, 2051-2054.	1.1	23
198	Synthesis of carbon nitride films by direct current plasma assisted pulsed laser deposition. Applied Physics A: Materials Science and Processing, 2002, 74, 225-231.	1.1	23

#	Article	IF	CITATIONS
199	Intrinsic mechanical properties of diamond-like carbon thin films deposited by filtered cathodic vacuum arc. Journal of Applied Physics, 2004, 95, 3509-3515.	1.1	23
200	Flip Chip Based on Carbon Nanotube–Carbon Nanotube Interconnected Bumps for High-Frequency Applications. IEEE Nanotechnology Magazine, 2013, 12, 609-615.	1.1	23
201	Valley polarization in stacked MoS2 induced by circularly polarized light. Nano Research, 2017, 10, 1618-1626.	5.8	23
202	Tribological Properties of Tetrahedral Carbon Films Deposited by Filtered Cathodic Vacuum Arc Technique. Materials Research Society Symposia Proceedings, 1996, 436, 293.	0.1	22
203	Low pressure polymer precursor process for synthesis of hard glassy carbon and diamond films. Diamond and Related Materials, 1997, 6, 230-234.	1.8	22
204	Structural and magnetic properties of iron-nitride thin films deposited using a filtered cathodic vacuum arc. Thin Solid Films, 2005, 478, 61-66.	0.8	22
205	Thickness-dependent optical properties of ZnO thin films. Journal of Materials Science: Materials in Electronics, 2007, 18, 343-346.	1.1	22
206	Molecular dynamic simulation of diamond/silicon interfacial thermal conductance. Journal of Applied Physics, 2013, 113, .	1.1	22
207	Deposition of nitrogen doped tetrahedral amorphous carbon (ta-C:N) films by ion beam assisted filtered cathodic vacuum arc. Electronics Letters, 1997, 33, 1339.	0.5	21
208	Deposition of carbon nitride films by filtered cathodic vacuum arc combined with radio frequency ion beam source. Diamond and Related Materials, 2000, 9, 2010-2018.	1.8	21
209	Influence of nitrogen ion energy on the Raman spectroscopy of carbon nitride films. Diamond and Related Materials, 2001, 10, 2137-2144.	1.8	21
210	Plasma immersion ion implantation of poly(tetrafluoroethylene). Surface and Coatings Technology, 2004, 177-178, 483-488.	2.2	21
211	Ion beam co-sputtering deposition of Au/SiO2 nanocomposites. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 27, 362-368.	1.3	21
212	Structure and properties of zirconium oxide thin films prepared by filtered cathodic vacuum arc. Applied Physics A: Materials Science and Processing, 2005, 81, 405-411.	1.1	21
213	Superhydrophobic carbon nanotube/amorphous carbon nanosphere hybrid film. Diamond and Related Materials, 2009, 18, 1235-1238.	1.8	21
214	Effect of hydrophilicity of carbon nanotube arrays on the release rate and activity of recombinant human bone morphogenetic protein-2. Nanotechnology, 2011, 22, 295712.	1.3	21
215	Enhanced Carbon Nanotubes Growth Using Nickel/Ferrocene-Hybridized Catalyst. ACS Omega, 2017, 2, 6063-6071.	1.6	21
216	Hydrogen free tetrahedral carbon film preparation and tribological characterisation. Surface Engineering, 1997, 13, 213-218.	1.1	20

#	Article	IF	CITATIONS
217	Effects on the deposition and mechanical properties of diamond-like carbon film using different inert gases in methane plasma. Thin Solid Films, 2000, 377-378, 198-202.	0.8	20
218	Influence of deposition pressure on the composition and structure of carbon nitride films deposited by direct current plasma assisted pulsed laser ablation. Applied Surface Science, 2001, 182, 32-39.	3.1	20
219	Influence of substrate bias on the microstructure and internal stress in Cu films deposited by filtered cathodic vacuum arc. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 2102-2108.	0.9	20
220	Intense and stable blue-light emission of Pb(ZrxTi1â^'x)O3. Applied Physics Letters, 2001, 79, 1082-1084.	1.5	20
221	Optimization of carbon nanotube powder growth using low pressure floating catalytic chemical vapor deposition. Materials Chemistry and Physics, 2006, 98, 256-260.	2.0	20
222	The effect of grain boundaries and adsorbates on the electrical properties of hydrogenated ultra nano crystalline diamond. Diamond and Related Materials, 2009, 18, 1118-1122.	1.8	20
223	Thermal conductivity of titanium aluminum silicon nitride coatings deposited by lateral rotating cathode arc. Thin Solid Films, 2013, 537, 108-112.	0.8	20
224	Field emission cathode based on three-dimensional framework carbon and its operation under the driving of a triboelectric nanogenerator. Nano Energy, 2018, 49, 308-315.	8.2	20
225	Stress relief of tetrahedral amorphous carbon films by post-deposition thermal annealing. Surface and Coatings Technology, 1999, 120-121, 448-452.	2.2	19
226	Pin-on-disk characterization of amorphous carbon films prepared by filtered cathodic vacuum arc technique. Diamond and Related Materials, 2000, 9, 819-824.	1.8	19
227	Optical properties of filtered cathodic vacuum arc-deposited zirconium oxide thin films. Journal of Physics Condensed Matter, 2003, 15, 7707-7715.	0.7	19
228	Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film. Applied Physics Letters, 2005, 86, 063506.	1.5	19
229	Carbon ion implantation of ultra-high molecular weight polyethylene using filtered cathodic vacuum arc with substrate pulse biasing. Surface and Coatings Technology, 2006, 200, 4104-4110.	2.2	19
230	Thermal conductivity of nanocrystalline carbon films studied by pulsed photothermal reflectance. Carbon, 2012, 50, 1428-1431.	5.4	19
231	Carbon Nanostructures Dedicated to Millimeter-Wave to THz Interconnects. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 383-390.	2.0	19
232	Direct interband transitions in tris-(8-hydroxyquinoline) aluminum thin films. Journal of Applied Physics, 2001, 89, 1082-1086.	1.1	18
233	Structural and tribological properties of hard carbon film synthesized by heat-treatment of a polymer on graphite substrate. Thin Solid Films, 2001, 389, 161-166.	0.8	18
234	Influence of substrate bias on the structure and mechanical properties of ta-C:W films deposited by filtered cathodic vacuum arc. Surface and Coatings Technology, 2001, 146-147, 398-404.	2,2	18

#	Article	IF	CITATIONS
235	Carbon arc plasma transport through different off-plane double bend filters. Surface and Coatings Technology, 2002, 150, 50-56.	2.2	18
236	Correlation of surface, mechanical and microproperties of tetrahedral amorphous carbon films deposited under different magnetic confinement conditions. Applied Surface Science, 2004, 221, 455-466.	3.1	18
237	Atomistic Origin of the Thermally Driven Softening of Raman Optical Phonons in Group III Nitrides. Journal of Physical Chemistry C, 2007, 111, 13606-13610.	1.5	18
238	Growth and field emission property of coiled carbon nanostructure using copper as catalyst. Applied Surface Science, 2010, 256, 4417-4422.	3.1	18
239	Microstructure and through-film electrical characteristics of vertically aligned amorphous carbon films. Diamond and Related Materials, 2011, 20, 290-293.	1.8	18
240	Field emission from cobalt-containing amorphous carbon composite films heat-treated in an acetylene ambient. Applied Physics Letters, 2000, 77, 2021-2023.	1.5	17
241	Field emission properties and surface structure of nickel containing amorphous carbon. Applied Surface Science, 2001, 180, 185-190.	3.1	17
242	Structural characteristics and mechanical properties of aluminium oxide thin films prepared by off-plane filtered cathodic vacuum arc system. Surface and Coatings Technology, 2003, 167, 234-239.	2.2	17
243	Comment on "Laser-like mechanoluminescence in ZnMnTe-diluted magnetic semiconductor―[Appl. Phys. Lett. 81, 460 (2002)]. Applied Physics Letters, 2003, 82, 3568-3569.	1.5	17
244	Study of nanocrystal TiO2 thin films by thermal annealing. Journal of Electroceramics, 2006, 16, 489-493.	0.8	17
245	Flux-mediated diffuse mismatch model. Applied Physics Letters, 2010, 97, .	1.5	17
246	Morphology-tunable assembly of periodically aligned Si nanowire and radial pn junction arrays for solar cell applications. Applied Surface Science, 2012, 258, 6169-6176.	3.1	17
247	Mildly reduced graphene oxide-Ag nanoparticle hybrid films for surface-enhanced Raman scattering. Nanoscale Research Letters, 2012, 7, 205.	3.1	17
248	Light emission from localised point defects induced in GaN crystal by a femtosecond-pulsed laser. Optical Materials Express, 2018, 8, 2703.	1.6	17
249	Enhanced field emission properties of carbon nanotube films using densification technique. Applied Surface Science, 2019, 477, 211-219.	3.1	17
250	Magnetic properties of Fe+-implanted silica films after post-implantation annealing. Journal of Applied Physics, 2000, 88, 2745-2749.	1.1	16
251	Effects of substrate bias and growth temperature on properties of aluminium oxide thin films by using filtered cathodic vacuum arc. Surface and Coatings Technology, 2005, 198, 94-97.	2.2	16
252	Self-organized carbon nanotubes grown at the grain boundary of iron-nitride. Carbon, 2005, 43, 654-657.	5.4	16

#	Article	IF	Citations
253	Photoluminescence and growth mechanism of amorphous silica nanowires by vapor phase transport. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 31, 218-223.	1.3	16
254	Effect of initial sp3 content on bonding structure evolution of amorphous carbon upon pulsed laser annealing. Diamond and Related Materials, 2012, 30, 48-52.	1.8	16
255	Thermal conductivity characterization of three dimensional carbon nanotube network using freestanding sensor-based 3 ï‰ technique. Surface and Coatings Technology, 2018, 345, 105-112.	2.2	16
256	Hardwareâ€Friendly Stochastic and Adaptive Learning in Memristor Convolutional Neural Networks. Advanced Intelligent Systems, 2021, 3, 2100041.	3.3	16
257	Deposition of (Ti, Al)N films by filtered cathodic vacuum arc. Thin Solid Films, 2000, 379, 76-82.	0.8	15
258	Field emission from metal-containing amorphous carbon composite films. Diamond and Related Materials, 2001, 10, 1727-1731.	1.8	15
259	The synthesis of carbon nanotubes and zirconium carbide composite films on a glass substrate. Nanotechnology, 2004, 15, 663-666.	1.3	15
260	Improving organic light-emitting devices by modifying indium tin oxide anode with an ultrathin tetrahedral amorphous carbon film. Journal of Applied Physics, 2005, 98, 046107.	1.1	15
261	Electronic conductance of ion implanted and plasma modified polymers. Applied Physics Letters, 2007, 91, .	1.5	15
262	One-step synthesis of pure Cu nanowire/carbon nanotube coaxial nanocables with different structures by arc discharge. Journal of Physics and Chemistry of Solids, 2011, 72, 1519-1523.	1.9	15
263	Interpillar phononics in pillared-graphene hybrid nanostructures. Journal of Applied Physics, 2011, 110, 083502.	1.1	15
264	Photoresponse: Highly Sensitive Detection of Polarized Light Using Anisotropic 2D ReS ₂ (Adv. Funct. Mater. 8/2016). Advanced Functional Materials, 2016, 26, 1146-1146.	7.8	15
265	Plasma flow simulation in an off-plane double bend magnetic filter. Surface and Coatings Technology, 2000, 133-134, 593-597.	2.2	14
266	FABRICATION OF CARBON NANOTUBE FILM ARRAYS FOR FIELD EMISSION FLAT PANEL DISPLAY APPLICATION. Surface Review and Letters, 2001, 08, 505-508.	0.5	14
267	Influence of thermal annealing on optical properties and structure of aluminium oxide thin films by filtered cathodic vacuum arc. Optical Materials, 2004, 27, 465-469.	1.7	14
268	Carbon nanotubes grown on cobalt-containing amorphous carbon composite films. Diamond and Related Materials, 2006, 15, 171-175.	1.8	14
269	Time-dependent electrical double layer with blocking electrode. Applied Physics Letters, 2009, 94, .	1.5	14
270	Enhanced field emission properties of carbon nanotube bundles confined in SiO2pits. Nanotechnology, 2018, 29, 075205.	1.3	14

#	Article	IF	Citations
271	Ti ₃ C ₂ (MXene) based field electron emitters. Nanotechnology, 2020, 31, 285701.	1.3	14
272	Electrical properties of TiN films deposited by filtered cathodic vacuum arc. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2000.	1.6	13
273	Characterization of Ti-containing amorphous carbon films prepared on titanium substrates. Journal of Materials Science, 2003, 38, 421-425.	1.7	13
274	Properties of amorphous ZrOx thin films deposited by filtered cathodic vacuum arc. Journal of Non-Crystalline Solids, 2003, 332, 185-189.	1.5	13
275	Nitrogen-ion-energy dependent optical and structural properties of AlN films obtained using a filtered cathodic vacuum arc. Journal Physics D: Applied Physics, 2003, 36, 2543-2547.	1.3	13
276	Fabrication of diamond-like amorphous carbon cantilever resonators. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 2680.	1.6	13
277	Optical and electrical properties of amorphous carbon films deposited using filtered cathodic vacuum arc with pulse biasing. Thin Solid Films, 2004, 447-448, 148-152.	0.8	13
278	Catalytic chemical vapor deposition of vertically aligned carbon nanotubes on iron nanoislands formed from Fe+-implanted SiO2 films. Carbon, 2004, 42, 3030-3033.	5.4	13
279	The reversible wettability of Ti containing amorphous carbon films by UV irradiation. Surface and Coatings Technology, 2005, 198, 184-188.	2.2	13
280	The structure and annealing properties of multilayer carbon films. Surface and Coatings Technology, 2005, 198, 217-222.	2.2	13
281	Conducting Ni nanoparticles in an ion-modified polymer. Journal of Applied Physics, 2005, 98, 066101.	1.1	13
282	Monochromatic photoluminescence obtained from embedded ZnO nanodots in an ultrahard diamond-like carbon matrix. Diamond and Related Materials, 2008, 17, 167-170.	1.8	13
283	Tunable transport properties of n-type ZnO nanowires by Ti plasma immersion ion implantation. Journal of Applied Physics, 2008, 104, .	1.1	13
284	Phononic and structural response to strain in wurtzite-gallium nitride nanowires. Journal of Applied Physics, 2012, 111, 103506.	1.1	13
285	Dual-Window Dual-Bandwidth Spectroscopic Optical Coherence Tomography Metric for Qualitative Scatterer Size Differentiation in Tissues. IEEE Transactions on Biomedical Engineering, 2012, 59, 2439-2448.	2.5	13
286	Evolution of Raman Scattering and Electronic Structure of Ultrathin Molybdenum Disulfide by Oxygen Chemisorption. Advanced Electronic Materials, 2015, 1, 1400037.	2.6	13
287	Deposition of permalloy films by filtered cathodic vacuum arc. Thin Solid Films, 2003, 443, 115-119.	0.8	12
288	Effect of chemical oxidation on the gas sensing properties of multi-walled carbon nanotubes. International Journal of Nanotechnology, 2009, 6, 735.	0.1	12

#	Article	IF	CITATIONS
289	Morphological features of diamond films depending on substrate temperatures via a low pressure polymer precursor process in a hot filament reactor. Diamond and Related Materials, 1998, 7, 939-943.	1.8	11
290	Heat treatment of tetrahedral amorphous carbon films grown by filtered cathodic vacuum-arc technique. Diamond and Related Materials, 1999, 8, 1328-1332.	1.8	11
291	STRUCTURAL AND MECHANICAL PROPERTIES OF AMORPHOUS SILICON-CARBON ALLOY FILMS DEPOSITED BY FILTERED CATHODIC VACUUM ARC TECHNIQUE. International Journal of Modern Physics B, 2000, 14, 315-320.	1.0	11
292	Filtered cathodic vacuum arc deposition of thin film copper. Thin Solid Films, 2001, 398-399, 539-543.	0.8	11
293	Field emission from tetrahedral amorphous carbon films with various surface morphologies. Diamond and Related Materials, 2001, 10, 1515-1522.	1.8	11
294	Rapid thermal annealing study on the metal containing amorphous carbon films. Diamond and Related Materials, 2003, 12, 2093-2098.	1.8	11
295	Aligned ZnO Nanofibre Array Prepared by Vapour Transport in Air. Chinese Physics Letters, 2003, 20, 1319-1322.	1.3	11
296	Field-emission properties of carbon nanotubes grown using Cu–Cr catalysts. Journal of Vacuum Science & Technology B, 2009, 27, 41.	1.3	11
297	Tuning the Kapitza resistance in pillared-graphene nanostructures. Journal of Applied Physics, 2012, 111,	1.1	11
298	Electrical properties of textured carbon film formed by pulsed laser annealing. Diamond and Related Materials, 2012, 23, 135-139.	1.8	11
299	DFT study of structural and electronic properties of MoS2(1â^'x)Se2x alloy (x = 0.25). Journal of Applied Physics, 2018, 123, 161594.	1.1	11
300	High deposition rate of aluminum oxide film by off-plane double bend filtered cathodic vacuum arc technique. Thin Solid Films, 2001, 386, 1-5.	0.8	10
301	Substrate bias dependence of the structure and internal stress of TiN films deposited by the filtered cathodic vacuum arc. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2002, 20, 1327-1331.	0.9	10
302	CARBON NANOCOMPOSITE THIN FILMS PREPARED BY FILTERED CATHODIC VACUUM ARC TECHNIQUE. International Journal of Modern Physics B, 2002, 16, 933-945.	1.0	10
303	Influence of substrate bias on the mechanical properties of ta-C:Co films prepared by filtered cathodic vacuum arc technique. Surface and Coatings Technology, 2003, 169-170, 393-396.	2.2	10
304	Impact of the CNT growth process on gold metallization dedicated to RF interconnect applications. International Journal of Microwave and Wireless Technologies, 2010, 2, 463-469.	1.5	10
305	Guest Editorial Special Issue on Applications of Nanotechnology in Electromagnetic Compatibility (nano-EMC). IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 2-5.	1.4	10
306	Highly efficient nanofiller based on carboxylated graphene oxide in phase change materials for cold thermal energy storage. Energy Procedia, 2018, 152, 198-203.	1.8	10

#	Article	IF	CITATIONS
307	Spectroscopic Nanoimaging of All-Semiconductor Plasmonic Gratings Using Photoinduced Force and Scattering Type Nanoscopy. ACS Photonics, 2018, 5, 4352-4359.	3.2	10
308	Study of Bone Morphogenetic Protein-2 Delivery with Different TiO ₂ Nanotube Structures. Nanoscience and Nanotechnology Letters, 2013, 5, 162-166.	0.4	10
309	Morphological features of diamond films grown on diamond-like carbon films synthesized from polymer by chemical vapor deposition. Journal of Crystal Growth, 1997, 173, 402-407.	0.7	9
310	Effect of heavy ion implantation on the properties of tetrahedral amorphous carbon film. Thin Solid Films, 2000, 377-378, 269-273.	0.8	9
311	Oriented carbon microfibers grown by catalytic decomposition of acetylene and their field emission properties. Diamond and Related Materials, 2001, 10, 878-882.	1.8	9
312	Field emission from polymer-converted carbon films by ultraviolet radiation. Applied Physics Letters, 2001, 78, 2009-2011.	1.5	9
313	Phase transformation of diamond films during electron field emission. Applied Surface Science, 2001, 173, 282-289.	3.1	9
314	Oxygen lone-pair states near the valence band edge of aluminum oxide thin films. Journal of Applied Physics, 2004, 95, 4147-4150.	1.1	9
315	Distinguishing the effect of surface passivation from the effect of size on the photonic and electronic behavior of porous silicon. Journal of Applied Physics, 2004, 96, 1704-1708.	1.1	9
316	Mechanical Properties of Zirconia Thin Films Deposited by Filtered Cathodic Vacuum Arc. Journal of the American Ceramic Society, 2005, 88, 2227-2229.	1.9	9
317	Field emission properties from aligned carbon nanotube films with tetrahedral amorphous carbon coatings. Diamond and Related Materials, 2006, 15, 1462-1466.	1.8	9
318	Three-Stage Transformation Pathway from Nanodiamonds to Fullerenes. Journal of Physical Chemistry A, 2011, 115, 8327-8334.	1.1	9
319	Femtosecond laser modification of an array of vertically aligned carbon nanotubes intercalated with Fe phase nanoparticles. Nanoscale Research Letters, 2013, 8, 375.	3.1	9
320	Improved RF Isolation Using Carbon Nanotube Fence-Wall for 3-D Integrated Circuits and Packaging. IEEE Microwave and Wireless Components Letters, 2015, 25, 355-357.	2.0	9
321	Global-Gate Controlled One-Transistor One-Digital-Memristor Structure for Low-Bit Neural Network. IEEE Electron Device Letters, 2021, 42, 106-109.	2.2	9
322	Performance Optimization of Atomic Layer Deposited HfO _x Memristor by Annealing With Back-End-of-Line Compatibility. IEEE Electron Device Letters, 2022, 43, 1141-1144.	2.2	9
323	Low pressure polymer precursor for synthesis of diamond at low temperature. Journal of Materials Science Letters, 1997, 16, 933-935.	0.5	8
324	Annealing effect on electron field-emission properties of diamond-like nanocomposite films. Journal of Applied Physics, 2000, 88, 5087-5092.	1.1	8

#	Article	IF	CITATIONS
325	XPS studies on aluminum ions modified polyimide with the PIII technique. Journal of Applied Physics, 2007, 101, 053301.	1.1	8
326	Fabrication of aligned carbon nanotubes on Cu catalyst by dc plasma-enhanced catalytic decomposition. Applied Surface Science, 2009, 255, 6404-6407.	3.1	8
327	Identifying the mechanisms of p-to-n conversion in unipolar graphene field-effect transistors. Nanotechnology, 2013, 24, 195202.	1.3	8
328	Band gap modifications of two-dimensional defected MoS _{2. International Journal of Nanotechnology, 2015, 12, 654.}	0.1	8
329	General approach for band gap calculation of semiconductors and insulators. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2834-2837.	0.8	8
330	Mesoporous NiCo2O4 nano-needles supported by 3D interconnected carbon network on Ni foam for electrochemical energy storage. Applied Surface Science, 2018, 439, 1019-1025.	3.1	8
331	Field emission properties of SiO ₂ -wrapped CNT field emitter. Nanotechnology, 2018, 29, 015202.	1.3	8
332	Assembly Process and Electrical Properties of Top-Transferred Graphene on Carbon Nanotubes for Carbon-Based 3-D Interconnects. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2020, 10, 516-524.	1.4	8
333	Growth of flake-like diamond crystal using polymer precursor. Thin Solid Films, 1997, 308-309, 159-162.	0.8	7
334	AN EMPIRICAL RELATION FOR CRITICAL LOAD OF DLC COATINGS PREPARED ON SILICON SUBSTRATES. International Journal of Modern Physics B, 2002, 16, 958-962.	1.0	7
335	Etching behaviour of pure and metal containing amorphous carbon films prepared using filtered cathodic vacuum arc technique. Applied Surface Science, 2002, 195, 107-116.	3.1	7
336	Fabrication of amorphous carbon cantilever structures by isotropic and anisotropic wet etching methods. Diamond and Related Materials, 2003, 12, 1495-1499.	1.8	7
337	Microstructural and surface properties of cobalt containing amorphous carbon thin film deposited by a filtered cathodic vacuum arc. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 353-358.	0.9	7
338	Deposition pressure dependence of internal stress in TiN films deposited by filtered cathodic vacuum arc. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1609-1615.	0.9	7
339	Micromachining of large area amorphous carbon membranes prepared by filtered cathodic vacuum arc technique. Applied Surface Science, 2004, 223, 286-293.	3.1	7
340	Electrical conductivity of poly(ethylene terephthalate) modified by titanium plasma. Journal of Applied Polymer Science, 2008, 107, 3332-3336.	1.3	7
341	Thermal Stablility and Oxidation Resistance of CrAlSiN Nano-Structured Coatings Deposited by Lateral Rotating Cathode Arc. Key Engineering Materials, 0, 447-448, 725-729.	0.4	7
342	Compounded effect of vacancy on interfacial thermal transport in diamond–graphene nanostructures. Diamond and Related Materials, 2011, 20, 1137-1142.	1.8	7

#	Article	IF	Citations
343	Plasmon resonances of carbon-nanotube-based dipole antennas for nano-interconnects., 2011,,.		7
344	Thermal rectification reversal in carbon nanotubes. Journal of Applied Physics, 2012, 112, .	1.1	7
345	Thickness dependency of field emission in amorphous and nanostructured carbon thin films. Nanoscale Research Letters, 2012, 7, 286.	3.1	7
346	Temperature-dependent selective growth of carbon nanotubes in Si/SiO2 structures for field emitter array applications. Materials Research Bulletin, 2017, 95, 129-137.	2.7	7
347	Influences of water molecules on the electronic properties of atomically thin molybdenum disulfide. Applied Physics Letters, 2017, 111, .	1.5	7
348	Influence of hydrogen on the structure and properties of tetrahedral amorphous carbon films obtained by the filtered cathodic vacuum arc technique. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 1647-1658.	0.6	6
349	Study of tin films by filtered cathodic vacuum arc techniques. Surface Engineering, 1999, 15, 33-37.	1.1	6
350	SOLUTION CERTAINTY IN THECu(110)-(2 \tilde{A} — 1)-202-SURFACE CRYSTALLOGRAPHY. International Journal of Modern Physics B, 2002, 16, 71-78.	1.0	6
351	EFFECT OF SURFACE PROPERTIES ON THE WETTABILITY OF IRON CONTAINING AMORPHOUS CARBON FILMS. International Journal of Modern Physics B, 2002, 16, 1031-1037.	1.0	6
352	Fabrication of smooth amorphous carbon micro-cantilevers by lift-off. Sensors and Actuators B: Chemical, 2004, 98, 275-281.	4.0	6
353	Microstructure effect on field emission from tetrahedral amorphous carbon films annealed in nitrogen and acetylene ambient. Diamond and Related Materials, 2004, 13, 133-138.	1.8	6
354	Property study of aluminium oxide thin films by thermal annealing. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 77-80.	0.8	6
355	CNTs effects on RF resonators printed on paper. , 2013, , .		6
356	Graphitization and amorphization of textured carbon using high-energy nanosecond laser pulses. Carbon, 2016, 105, 227-232.	5.4	6
357	Surface plasmons in suspended graphene: launching with in-plane gold nanoantenna and propagation properties. Optics Express, 2017, 25, 17306.	1.7	6
358	Controlled, Lowâ€Temperature Nanogap Propagation in Graphene Using Femtosecond Laser Patterning. Small, 2018, 14, e1801348.	5.2	6
359	Thermal conductivity enhancement of carbon@ carbon nanotube arrays and bonded carbon nanotube network. Materials Research Express, 2019, 6, 085616.	0.8	6
360	Development of a CMOS-Compatible Carbon Nanotube Array Transfer Method. Micromachines, 2021, 12, 95.	1.4	6

#	Article	IF	CITATIONS
361	Annealing effects on field emission properties of tetrahedral amorphous carbon films. Applied Surface Science, 2001, 174, 283-288.	3.1	5
362	Mechanical properties of gradient pulse biased amorphous carbon film. Thin Solid Films, 2008, 516, 5364-5367.	0.8	5
363	On the fabrication of resistor-shaped ZnO nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 859-865.	1.3	5
364	Fabrication and Characterization of Multilayer Amorphous Carbon Films for Microcantilever Devices. IEEE Sensors Journal, 2008, 8, 616-620.	2.4	5
365	Trade-offs in designing antennas from bundled carbon nanotubes. , 2012, , .		5
366	Monopole antenna based on carbon nanotubes. , 2013, , .		5
367	Integration of CNT in TSV (≤5 μm) for 3D IC application and its process challenges., 2013,,.		5
368	Electrical and Thermal Models of CNT TSV and Graphite Interface. IEEE Transactions on Electron Devices, 2018, 65, 1880-1886.	1.6	5
369	Graphene–Metal Nanoparticles for Enhancing Thermoelectric Power Factor. IEEE Nanotechnology Magazine, 2019, 18, 1114-1118.	1.1	5
370	Deposited poly-Si as on-demand linewidth compensator for on-chip Fabry–Perot interferometer and vertical linear variable optical filter bandpass and passband manipulation. Journal of Micromechanics and Microengineering, 2019, 29, 047001.	1.5	5
371	Imaging the defect distribution in 2D hexagonal boron nitride by tracing photogenerated electron dynamics. Journal Physics D: Applied Physics, 2020, 53, 405106.	1.3	5
372	Optimization of nitrogenated amorphous carbon films deposited by dual ion beam sputtering. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 64, 6-11.	1.7	4
373	EFFECT OF SURFACE ROUGHNESS ON THE ADHESIVE AND TRIBOLOGICAL CHARACTERISTICS OF DLC COATING PREPARED ON Co-Cr-Mo ALLOY. International Journal of Modern Physics B, 2002, 16, 952-957.	1.0	4
374	Micromechanical properties of carbon nitride films deposited by radio-frequency-assisted filtered cathodic vacuum arc. Applied Physics A: Materials Science and Processing, 2002, 75, 375-380.	1.1	4
375	NANOSTRUCTURAL ZnO FABRICATED BY VAPOR-PHASE TRANSPORT IN AIR. International Journal of Modern Physics B, 2004, 18, 225-232.	1.0	4
376	Vibratory response of diamond-like amorphous carbon cantilevers under different temperatures. Diamond and Related Materials, 2004, 13, 1980-1983.	1.8	4
377	Electroless Plating of Nickel on Carbon Nanotubes Film. , 0, , .		4
378	Diamond-shaped ZnO microrafts and their optical and magnetic properties. Nanotechnology, 2007, 18, 055709.	1.3	4

#	Article	IF	CITATIONS
379	Effective photoluminescence modification of ZnO nanocombs by plasma immersion ion implantation. , 2008, , .		4
380	EFFECTS OF UNDER CNT METALLIZATION LAYERS ON CARBON NANOTUBES GROWTH. Modern Physics Letters B, 2008, 22, 1827-1836.	1.0	4
381	Dewetting of polymer films by ion implantation. European Physical Journal E, 2009, 28, 273-278.	0.7	4
382	Linking urban aerosol fluxes in street canyons to larger scale emissions. Atmospheric Chemistry and Physics, 2010, 10, 2475-2490.	1.9	4
383	Performance assessment of optimized carbon-nanotube-based wireless on-chip communication. , 2012, , .		4
384	Study of nanocluster-assembled ZnO thin films by nanocluster-beam deposition. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 128-132.	0.8	4
385	Fabrication of large diameter TiO _{2 nanotube for bone morphogenetic protein-2 delivery. International Journal of Nanotechnology, 2014, 11, 1097.}	0.1	4
386	A light-weight electromagnetic shield using high density carbon nanotube fence-wall for RF packaging. , $2015, , .$		4
387	Oxidation-Based Continuous Laser Writing in Vertical Nano-Crystalline Graphite Thin Films. Scientific Reports, 2016, 6, 26224.	1.6	4
388	Study of plasma efficiency as a function of arc current in filtered cathodic vacuum arc systems. Diamond and Related Materials, 2001, 10, 947-951.	1.8	3
389	Raman spectroscopy and x-ray diffraction studies of (Ti,Al)N films deposited by filtered cathodic vacuum arc at room temperature. Journal of Applied Physics, 2001, 89, 6192-6197.	1.1	3
390	Characterization of (Ti, Al)N films deposited by off-plane double bend filtered cathodic vacuum arc. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 557-562.	0.9	3
391	Development of a novel carbon based material for integrated passive application. , 0, , .		3
392	Studies of copper vacuum arc plasma through an off-plane double-bend filtering duct. Surface and Coatings Technology, 2003, 169-170, 482-486.	2.2	3
393	Influence of working pressure on properties of titanium oxide thin films at room temperature. Journal of Applied Physics, 2007, 101, 013505.	1.1	3
394	Self-assembled Ni nanoclusters in a diamond-like carbon matrix. International Journal of Nanotechnology, 2007, 4, 424.	0.1	3
395	Temperature sensibility of amorphous diamond films prepared by filtered arc. Diamond and Related Materials, 2007, 16, 558-561.	1.8	3
396	Ti–PS nanocomposites by plasma immersion ion implantation and deposition. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 496-501.	0.6	3

#	Article	IF	CITATIONS
397	Nanocrystalline zirconium oxide thin films grown under low pulsed dc voltages. Journal Physics D: Applied Physics, 2009, 42, 215408.	1.3	3
398	Structure and wetting properties of metal polymer nanocomposites. International Journal of Nanotechnology, 2009, 6, 653.	0.1	3
399	Study of carbon nanotube flip-chip methodology for interconnect technology via electromagnetic and circuit model approach. , $2011,\ldots$		3
400	Characterization of CNT interconnection bumps implemented for 1st level flip chip packaging. , 2011, , .		3
401	Hybrid EM/circuit modeling for carbon nanotubes based interconnects. , 2011, , .		3
402	Thermal transport around tears in graphene. Journal of Applied Physics, 2011, 109, 043508-043508-6.	1.1	3
403	Fabrication and characterization of carbon nanotube intermolecular p–n junctions. Solid-State Electronics, 2012, 77, 46-50.	0.8	3
404	Microwave Frequency Characteristics of Magnetically Functionalized Carbon Nanotube Arrays. IEEE Transactions on Electromagnetic Compatibility, 2012, 54, 70-80.	1.4	3
405	Thickness dependency of the structure and laser irradiation stability of filtered cathodic vacuum arc grown carbon films for heat assisted magnetic recording overcoat. Surface and Coatings Technology, 2013, 236, 207-211.	2.2	3
406	Design and assessment of carbon-nanotube-based remote links to nanodevices., 2013,,.		3
407	Solid source growth of Si oxide nanowires promoted by carbon nanotubes. Applied Surface Science, 2014, 314, 119-123.	3.1	3
408	Microwave and Millimeter Wave Properties of Vertically-Aligned Single Wall Carbon Nanotubes Films. Journal of Electronic Materials, 2016, 45, 2433-2441.	1.0	3
409	Carbon Nanotube Based Faraday's Cage for RF Circuit Packaging. IEEE Nanotechnology Magazine, 2018, 17, 1295-1298.	1.1	3
410	Electron Field Emission from Multilayered Tetrahedral Amorphous Carbon Films. Materials Research Society Symposia Proceedings, 1997, 498, 215.	0.1	2
411	Tribological and optical properties of hydrogen-free amorphous carbon films with varying sp3/sp2 composition. Surface and Interface Analysis, 1999, 28, 226-230.	0.8	2
412	X-RAY REFLECTIVITY STUDY OF TETRAHEDRAL AMORPHOUS CARBON FILMS. International Journal of Modern Physics B, 2000, 14, 181-187.	1.0	2
413	Filtered cathodic vacuum arc deposition of copper thin film. Electronics Letters, 2000, 36, 1205.	0.5	2
414	Influence of high-substrate-bias voltage on the characteristics of DLC coatings., 2000, 4227, 157.		2

#	Article	IF	CITATIONS
415	Tribological Behavior of Nanocomposite Diamondlike Carbon-Aluminum Films. Materials Research Society Symposia Proceedings, 2001, 695, 1.	0.1	2
416	Dependences of amorphous structure on bias voltage and annealing in silicon–carbon alloys. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 85, 20-24.	1.7	2
417	Field emission from heat-treated cobalt-containing amorphous carbon composite films on glass substrate. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 950.	1.6	2
418	TRIBOLOGICAL AND MECHANICAL PROPERTIES OF ALUMINUM CONTAINING TETRAHEDRAL AMORPHOUS CARBON FILMS. International Journal of Modern Physics B, 2002, 16, 946-951.	1.0	2
419	Structure and mechanical properties of tungsten carbide films deposited by off-plane double bend filtered cathodic vacuum arc. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 411-415.	0.9	2
420	A simple method to fabricate silicon nanowires arrays by a catalytic electrochemical etching process. , 2008, , .		2
421	Nonvolatile Memory Effects of ZnO Nanoparticles Embedded in an Amorphous Carbon Layer. Japanese Journal of Applied Physics, 2010, 49, 070209.	0.8	2
422	Growth and Characterization of Bamboo-Shaped Carbon Nanotubes Using Nanocluster-Assembled ZnO:Co Thin Films as Catalyst. Journal of Nanoscience and Nanotechnology, 2012, 12, 6583-6587.	0.9	2
423	Measurement and modeling of carbon nanotubes-based flip-chip RF device. , 2013, , .		2
424	Photocatalytic properties of nanostructured titanium dioxide. Journal of Applied Spectroscopy, 2013, 79, 1010-1013.	0.3	2
425	Monitoring cell proliferation in silk fibroin scaffolds using spectroscopic optical coherence tomography. Microwave and Optical Technology Letters, 2013, 55, 2587-2594.	0.9	2
426	A bulk equivalent model of carbon-nanotube arrays : Application to the design of novel antennas. , 2014, , .		2
427	Carbon-nanotube-based electrically-short resonant antennas. International Journal of Microwave and Wireless Technologies, 2014, 6, 57-62.	1.5	2
428	Carbon nanotube cavity for compact Radar components. , 2015, , .		2
429	Field emission characteristics of short CNT bundles. , 2016, , .		2
430	Growth and fabrication of carbon-based three-dimensional heterostructure in through-silicon vias (TSVs) for 3D interconnects. , 2017, , .		2
431	Monolayer WS2 Enhanced High Sensitivity Plasmonic Biosensor based on Phase Modulation., 2017,,.		2
432	Theoretical study of CNT based waveguide. , 2018, , .		2

#	Article	IF	Citations
433	Carbon Nanotube for Interconnects and Nano-Packaging Application. , 2019, , .		2
434	Effects of precursors' purity on graphene quality: Synthesis and thermoelectric effect. AIP Advances, 2020, 10, .	0.6	2
435	Fabrication and Simulation of Amorphous Carbon Cantilever Structures. Materials Research Society Symposia Proceedings, 2003, 773, 321.	0.1	2
436	Dielectric suppression, blue-shift in photo luminescence and absorption of nanometric semiconductors. , 0, , .		1
437	Low temperature deposition of tantalum diffusion barrier by filtered cathodic vacuum arc. Journal Physics D: Applied Physics, 2003, 36, 1355-1359.	1.3	1
438	Surface energy of metal containing amorphous carbon films deposited by filtered cathodic vacuum arc. Diamond and Related Materials, 2004, 13, 459-459.	1.8	1
439	Effects of Catalyst Layers on Carbon Nanotubes Growth. Materials Research Innovations, 2006, 10, 346-351.	1.0	1
440	Passivation layer on polyimide deposited by combined plasma immersion ion implantation and deposition and cathodic vacuum arc technique. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 411-414.	0.9	1
441	Thermal stability of nonhydrogenated multilayer amorphous carbon prepared by the filtered cathodic vacuum arc technique. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 421-424.	0.9	1
442	Structural and wetting properties of metal polymer nanocomposites., 2008,,.		1
443	Carbon Nanotubes (CNTs) as conductive filler for polymer composite. , 2008, , .		1
444	Microstructure and electrical properties of in-situ annealed carbon films. , 2010, , .		1
445	Electrical transport in carbon nanotube intermolecular p-n junctions., 2011,,.		1
446	Facile Fabrication of Si Nanowire Arrays for Solar Cell Application. Journal of Nanoscience and Nanotechnology, 2011, 11, 10539-10543.	0.9	1
447	Carbon nanotube array as high impedance interconnects for sensing device integration. , 2013, , .		1
448	Carbon-nanotube-based RF components with multiple applications. , 2013, , .		1
449	Carbon nanotube-based printed antenna for conformal applications., 2013,,.		1
450	Self-organised hybrid nanostructures composed of the array of vertically aligned carbon nanotubes and planar graphene multi-layer. International Journal of Nanotechnology, 2014, 11, 230.	0.1	1

#	Article	IF	Citations
451	Inkjet-printing of hybrid Ag/conductive polymer towards strechable microwave devices. , 2015, , .		1
452	Carbon-nanotube-based wireless on-chip interconnects. , 2016, , .		1
453	Influence of optically active defects on thermal conductivity of polycrystalline diamond. EPJ Applied Physics, 2017, 80, 20102.	0.3	1
454	Study of carbon nanotube array antenna for submillimeter-wave wireless interconnect., 2017,,.		1
455	First demonstration of gate voltage-less chemical vapour deposition graphene for non-vacuum thermoelectric study. , $2018, $, .		1
456	Low Temperature Deposition of Zinc Oxide Films. Materials Research Society Symposia Proceedings, 2003, 763, 5161.	0.1	1
457	From Bulk TFETs to CNT-TFETs: Status and Trends. , 2012, , 239-246.		1
458	Low cost rapid fabrication of vertical LVOF microspectrometer on-chip for MIR sensing. , 2018, , .		1
459	Enhanced Tunneling Magnetoresistance Effect via Ferroelectric Control of Interface Electronic/Magnetic Reconstructions. ACS Applied Materials & Interfaces, 2021, 13, 56638-56644.	4.0	1
460	Formation and diffusion of intrinsic point defects in bulk and monolayer MoS 2 : first principles study. Physica Status Solidi (B): Basic Research, 0, , .	0.7	1
461	Low-Power Magnetron Sputtering Deposition of Antimonene Nanofilms for Water Splitting Reaction. Micromachines, 2022, 13, 489.	1.4	1
462	Field emission from nitrogen doped tetrahedral amorphous carbon prepared by filtered cathodic vacuum arc technique. , 1997 , , .		0
463	Tuning dielectric constant and Young's modulus by nanofabrication. , 2000, 4228, 302.		O
464	Optical properties of aluminium oxide thin films prepared at room temperature by off-plane filtered cathodic vacuum arc system. Thin Solid Films, 2003, 447-448, 14-14.	0.8	0
465	Stress and Strength of free-standing 2-dimensional tetrahedral amorphous carbon bridge arrays. Materials Research Society Symposia Proceedings, 2003, 795, 499.	0.1	O
466	Fabrication of smooth thin diamond-like carbon microstructures by photolithography together with dry and wet etching techniques. , 2003, , .		0
467	Morphology and microstructure of carbon nanotubes grown by hot filament chemical vapor deposition. , 0, , .		0
468	Mechanisms for the Behaviour of Amorphous Carbon Films During Annealing. Microscopy and Microanalysis, 2004, 10, 614-615.	0.2	0

#	Article	IF	CITATIONS
469	Formation of carbon nanoclusters by implantation of keV carbon ions in fused silica followed by thermal annealing., 2005, 5650, 35.		O
470	Investigation of Amorphous Silicon-Carbon Films Deposited by Filtered Vacuum Cathodic Arc. Journal of Metastable and Nanocrystalline Materials, 2005, 23, 351-354.	0.1	0
471	GROWTH OF CARBON NANOTUBE BUNDLES ON MICROSCRATCHED SURFACES. International Journal of Nanoscience, 2005, 04, 419-422.	0.4	O
472	GROWTH AND STRUCTURAL STUDY OF NANOCRYSTALLINE TITANIUM OXIDE AND ZIRCONIUM OXIDE THIN FILMS DEPOSITED AT LOW TEMPERATURES. International Journal of Nanoscience, 2005, 04, 795-801.	0.4	0
473	Nanocrystalline Zirconium Oxide Thin Films Prepared by Filtered Cathodic Vacuum Arc. Journal of Metastable and Nanocrystalline Materials, 2005, 23, 63-66.	0.1	0
474	On the Wettability of Nanocomposite Amorphous Carbon Films. Journal of Metastable and Nanocrystalline Materials, 2005, 23, 67-70.	0.1	0
475	Large Stress Reduction Induced by sp ² Clustering in Tetrahedral Amorphous Carbon Films. Journal of Metastable and Nanocrystalline Materials, 2005, 23, 39-42.	0.1	0
476	Growth and Characterization of Carbon Nanotubes on Porous Silicon. , 0, , .		0
477	ZnO nanoresistors by vapor phase transport method., 0, , .		O
478	From nanostructured thin films to photonic devices –development and commercialization. , 0, , .		0
479	Fabrication of Nanoscale Multilayer Device by Filtered Cathodic Vacuum Arc for Optical Application. , 0, , .		0
480	Fabrication of embedded conductive layer in polymer by plasma immersion ion implantation., 2006,,.		0
481	Spectroscopic Study of Titanium Oxide Thin Films at Low Temperatures by X-ray Diffraction, Raman Scattering, Fourier Transform Infrared Spectroscopy and Photoluminescence. Materials Research Society Symposia Proceedings, 2006, 928, 1.	0.1	0
482	Effects of a-C:Fe Catalyst Deposition Method on the Growth of Carbon Nanotubes. , 0, , .		0
483	Study of electrochemical supercapacitors utilizing carbon nanotubes electrodes and PVA-hybrid polyacid electrolytes., 2008,,.		O
484	Directly assembly and electrical transport measurement of nanowires by nano-manipulator probes. , 2008, , .		0
485	Initial growth of conducting island-like structure on insulating polymer substrate. , 2008, , .		0
486	Effect of chemical oxidation on the gas sensing properties of multi-walled carbon nanotubes. , 2008, , .		0

#	Article	IF	CITATIONS
487	Large magnetic moment obtained in Cu-doped ZnO nanoclusters. , 2009, , .		О
488	High-temperature induced transformation of diamond nanowires to CNT: A molecular dymamics simulation. , $2010, , .$		0
489	Facile fabrication of Si nanowires arrays for solar cell applications. , 2010, , .		0
490	Property Study of aluminium oxide thin films by thermal annealing. , 2010, , .		0
491	Protein immobilization on nanostructured surfaces with different wettability., 2010,,.		O
492	Highly conductive aligned carbon film for interconnect application. , 2010, , .		0
493	Physical and electrical characterization of junction between single-layer graphene (SLG) and Ti prepared by various processes. , 2010 , , .		0
494	Growth and characterization of bamboo-shaped carbon nanotubes using nanocluster-assembled ZnO:Co thin films as catalyst. , 2010, , .		0
495	Nanodiamond clusters and their tranformation into fullerene at high temperature: A tight-binding simulation. , 2010, , .		0
496	Growth of few wall carbon nanotubes with narrow diameter distribution over Fe-Mo-MgO catalyst by methane/acetylene catalytic decomposition. , $2011, \ldots$		0
497	Understanding the electrical transport properties of carbon nanotubes and its metal under-layers. , 2011, , .		O
498	Chemically derived graphene as an effective substrate to detect fluorescence molecules., 2011,,.		0
499	Study on thermal boundary conductance between diamond and amorphous carbon. , 2011, , .		O
500	Heat conduction across multiwalled carbon nanotube/graphene hybrid films. , 2011, , .		0
501	Large diameter TiO <inf>2</inf> nanotube fabrication for bone morphogenetic protein delivery. , 2011, , .		0
502	Carbon metal composite film deposited using novel Filtered Cathodic Vacuum Arc technique. , 2011, , .		0
503	Optical resonance of nanoantennas consisting of single nanoparticle and couple nanoparticle pair., 2012,,.		0
504	Carbon Nanowires Fabrications via Top Down Approach. Journal of Nanoscience and Nanotechnology, 2012, 12, 707-713.	0.9	0

#	Article	IF	CITATIONS
505	Carbon based multi-functional materials towards 3D system integration. Application to thermal and interconnect management. , $2012, \ldots$		0
506	Formation of thick textured carbon film using filtered cathodic vacuum arc technique. , 2013, , .		0
507	Self-organized hybrid nanostructures composed of the array of vertically aligned carbon nanotubes and planar graphite layer. , 2013, , .		0
508	Droplet based lab-on-chip microfluidic Microsystems integrated nanostructured surfaces for high sensitive mass spectrometry analysis. , $2013, , .$		0
509	The influence of titanium nitride barrier layer on the properties of CNT bundles. , 2013, , .		0
510	Growth of Carbon Nanotubes on Carbon/Cobalt Films with Different sp ^{2} /sp ^{3} Ratios. Journal of Nanomaterials, 2013, 2013, 1-5.	1.5	0
511	Carbon nanostructures dedicated to RF interconnect management. , 2014, , .		0
512	Carbon nanotubes based nanopackaging dedicated to innovative high frequency interconnections. , 2014, , .		0
513	Interfaces in Two-Dimensional Heterostructures of Transition Metal Dichalcogenides. Microscopy and Microanalysis, 2015, 21, 105-106.	0.2	0
514	A graphene-based non-volatile memory. Proceedings of SPIE, 2015, , .	0.8	0
515	Electronic Structure: Evolution of Raman Scattering and Electronic Structure of Ultrathin Molybdenum Disulfide by Oxygen Chemisorption (Adv. Electron. Mater. 1-2/2015). Advanced Electronic Materials, 2015, 1, n/a-n/a.	2.6	0
516	Designing Carbon Nanotube Interconnects for Radio Frequency Applications. Advances in Atom and Single Molecule Machines, 2015, , 137-154.	0.0	0
517	RF nanopackaging approaches based on Carbon Nanotubes. , 2017, , .		0
518	Laser writing of localized color centers in hexagonal boron nitrides monolayers. , 2017, , .		0
519	Simulated behavior of planar-helix slow-wave structure traveling-wave tube at various electron beam current., 2017,,.		0
520	Field emission properties of Ex-situ and In-situ iron catalyst-grown carbon nanotubes., 2017,,.		0
521	Carbon nanotubes based RF packaging solutions. , 2018, , .		0
522	Two-Step Fabrication of Mid-Infrared Linear Variable Optical Filter Using SU-8 as Mask. , 2018, , .		0

#	Article	IF	CITATIONS
523	Thermal characterization of polycrystalline diamond using infrared thermal imaging measurement. , 2018, , .		O
524	First-Principles Study of Structural and Electronic Properties of MoS1.5Se0.5 Alloy. International Journal of Nanoscience, 2019, 18, 1940006.	0.4	0
525	Electrical properties of FCVA deposited nano-crystalline graphitic carbon thin films with in situ treatment techniques. EPJ Applied Physics, 2019, 85, 20301.	0.3	O
526	Millimeter-wave CNT Based Resonant Cavity., 2019,,.		0
527	Growth of Carbon Nanotubes on Metal Containing Amorphous Carbon (A-C:M) Films. , 2007, , .		0
528	Formation of Carbon Nanotube-Polymer Composites With Different Concentrations of Polystyrene Solution. , 2008, , .		0
529	Effects of Silicon Substrate on the Growth of Carbon Nanotubes. , 2009, , .		0
530	LASER TREATMENT OF CARBON FILMS: TOWARDS ELECTRONICS APPLICATION. , 2009, , .		0
531	RAMAN CHARACTERIZATION OF SELF-ORGANIZED PLANAR GRAPHITE LAYERS ON THE TOP OF CARBON NANOTUBE ARRAYS. , 2011, , .		O
532	DOUBLE-WALLED TITANIA NANOTUBES. , 2013, , .		0
533	Formation of Thick Textured Carbon Film Using Filtered Cathodic Vacuum Arc Technique. Nanoscience and Nanotechnology Letters, 2013, 5, 912-915.	0.4	O
534	Graphitisation of Waste Carbon Powder with Femtosecond Laser Annealing. Micromachines, 2022, 13, 120.	1.4	0
535	Surface disinfection with silver loaded pencil graphite prepared with green UV photoreduction technique. Nanotechnology, 2022, 33, 235602.	1.3	0
536	Analysis, Modelling and Applications of Ferroelectric Negative Capacitanceincorporated 2D Semiconductor Field Effect Transistors. , 2021, , .		0