Susan Wonnacott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4203665/publications.pdf

Version: 2024-02-01

83 7,288 38 81 g-index

85 85 85 85 4582

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Presynaptic nicotinic ACh receptors. Trends in Neurosciences, 1997, 20, 92-98.	4.2	1,161
2	Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends in Pharmacological Sciences, 2004, 25, 317-324.	4.0	546
3	Characterization of Nicotinic Receptor-Mediated [3H]Dopamine Release from Synaptosomes Prepared from Mouse Striatum. Journal of Neurochemistry, 1992, 59, 848-856.	2.1	342
4	Presynaptic Nicotinic Modulation of Dopamine Release in the Three Ascending Pathways Studied by In Vivo Microdialysis: Comparison of Naive and Chronic Nicotineâ€Treated Rats. Journal of Neurochemistry, 1997, 68, 1511-1519.	2.1	254
5	Precise Localization of Â7 Nicotinic Acetylcholine Receptors on Glutamatergic Axon Terminals in the Rat Ventral Tegmental Area. Journal of Neuroscience, 2004, 24, 11244-11252.	1.7	248
6	Nicotine: from molecular mechanisms to behaviour. Current Opinion in Pharmacology, 2005, 5, 53-59.	1.7	243
7	Characterisation of the binding of [3H]methyllycaconitine: a new radioligand for labelling $\hat{l}\pm7$ -type neuronal nicotinic acetylcholine receptors. Neuropharmacology, 1999, 38, 679-690.	2.0	235
8	α-Bungarotoxin-Sensitive Nicotinic Receptors Indirectly Modulate [³ H]Dopamine Release in Rat Striatal Slices via Glutamate Release. Molecular Pharmacology, 2000, 58, 312-318.	1.0	210
9	Presynaptic nicotinic receptors modulating dopamine release in the rat striatum. European Journal of Pharmacology, 2000, 393, 51-58.	1.7	204
10	Stereoselective Nicotine-Induced Release of Dopamine from Striatal Synaptosomes: Concentration Dependence and Repetitive Stimulation. Journal of Neurochemistry, 1988, 50, 1123-1130.	2.1	197
11	6-Hydroxydopamine-induced Apoptosis Is Mediated via Extracellular Auto-oxidation and Caspase 3-dependent Activation of Protein Kinase Cl´. Journal of Biological Chemistry, 2006, 281, 5373-5382.	1.6	193
12	Nicotinic Modulation of [3H]Dopamine Release from Striatal Synaptosomes: Pharmacological Characterisation. Journal of Neurochemistry, 1990, 54, 937-945.	2.1	192
13	$\hat{l}\pm6\hat{l}^22^*$ and $\hat{l}\pm4\hat{l}^22^*$ Nicotinic Acetylcholine Receptors As Drug Targets for Parkinson's Disease. Pharmacological Reviews, 2011, 63, 938-966.	7.1	174
14	UB-165: A Novel Nicotinic Agonist with Subtype Selectivity Implicates the $\hat{l}\pm4\hat{l}^22^*$ Subtype in the Modulation of Dopamine Release from Rat Striatal Synaptosomes. Journal of Neuroscience, 2000, 20, 2783-2791.	1.7	161
15	Presynaptic localisation of the nicotinic acetylcholine receptor ?2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones. Journal of Comparative Neurology, 2001, 439, 235-247.	0.9	158
16	Presynaptic α7- and β2-Containing Nicotinic Acetylcholine Receptors Modulate Excitatory Amino Acid Release from Rat Prefrontal Cortex Nerve Terminals via Distinct Cellular Mechanisms. Molecular Pharmacology, 2008, 74, 348-359.	1.0	151
17	Intracellular Ca2+ signals evoked by stimulation of nicotinic acetylcholine receptors in SH-SY5Y cells: contribution of voltage-operated Ca2+ channels and Ca2+ stores. Journal of Neurochemistry, 2002, 81, 606-614.	2.1	145
18	Methyllycaconitine Is a Potent Antagonist of α-Conotoxin-MII-Sensitive Presynaptic Nicotinic Acetylcholine Receptors in Rat Striatum. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 197-204.	1.3	139

#	Article	IF	Citations
19	Methyllycaconitine and (+)-anatoxin-a differentiate between nicotinic receptors in vertebrate and invertebrate nervous systems. FEBS Letters, 1988, 226, 357-363.	1.3	131
20	Indirect Modulation by α7 Nicotinic Acetylcholine Receptors of Noradrenaline Release in Rat Hippocampal Slices: Interaction with Glutamate and GABA Systems and Effect of Nicotine Withdrawal. Molecular Pharmacology, 2006, 69, 618-628.	1.0	126
21	Nicotinic acetylcholine receptors and the ascending dopamine pathways. Biochemical Pharmacology, 2009, 78, 744-755.	2.0	121
22	α7 and nonâ€Î±7 nicotinic acetylcholine receptors modulate dopamine release <i>in vitro</i> and <i>in vivo</i> in the rat prefrontal cortex. European Journal of Neuroscience, 2009, 29, 539-550.	1.2	121
23	An autoradiographic study of the distribution of binding sites for the novel $\hat{l}\pm 7$ -selective nicotinic radioligand [3H]-methyllycaconitine in the mouse brain. European Journal of Neuroscience, 1999, 11, 2689-2696.	1.2	110
24	Nicotinic Receptors Modulate Transmitter Cross Talk in the CNS: Nicotinic Modulation of Transmitters. Journal of Molecular Neuroscience, 2006, 30, 137-140.	1.1	95
25	Molecular and Cellular Mechanisms of Action of Nicotine in the CNS. Handbook of Experimental Pharmacology, 2009, , 173-207.	0.9	92
26	Differential coupling of $\hat{l}\pm7$ and non- $\hat{l}\pm7$ nicotinic acetylcholine receptors to calcium-induced calcium release and voltage-operated calcium channels in PC12 cells. Journal of Neurochemistry, 2007, 100, 1089-1096.	2.1	85
27	?-Bungarotoxin Binds to Low-Affinity Nicotine Binding Sites in Rat Brain. Journal of Neurochemistry, 1986, 47, 1706-1712.	2.1	83
28	Evidence for Functional Activity of Up-Regulated Nicotine Binding Sites in Rat Striatal Synaptosomes. Journal of Neurochemistry, 1990, 55, 2105-2110.	2.1	82
29	From ligand design to therapeutic efficacy: the challenge for nicotinic receptor research. Drug Discovery Today, 2005, 10, 1657-1665.	3.2	80
30	Presynaptic $\hat{l}\pm7$ and non- $\hat{l}\pm7$ nicotinic acetylcholine receptors modulate [3H]d-aspartate release from rat frontal cortex in vitro. Neuropharmacology, 2005, 49, 59-72.	2.0	72
31	Why doesn't nicotinic ACh receptor immunoreactivity knock out?. Trends in Neurosciences, 2005, 28, 343-345.	4.2	59
32	Hippocampal nicotinic autoreceptors modulate acetylcholine release. Biochemical Society Transactions, 1993, 21, 429-431.	1.6	58
33	Differential effects of chronic drug treatment on $\hat{l}\pm 3^*$ and $\hat{l}\pm 7$ nicotinic receptor binding sites, in hippocampal neurones and SH-SY5Y cells. British Journal of Pharmacology, 2001, 133, 1286-1295.	2.7	54
34	Synthesis and Pharmacological Characterization of Novel Analogues of the Nicotinic Acetylcholine Receptor Agonist ($\hat{A}\pm$)-UB-165. Journal of Medicinal Chemistry, 2002, 45, 3235-3245.	2.9	53
35	Characterization of a nicotinic acetylcholine receptor from the insectManduca sexta. European Journal of Neuroscience, 1998, 10, 879-889.	1.2	49
36	Presynaptic Nicotinic Receptors and the Modulation of Transmitter Release. Novartis Foundation Symposium, 1990, 152, 87-112.	1,2	46

#	Article	IF	CITATIONS
37	αConotoxin <i>Arenatus</i> IB[V11L,V16D] Is a Potent and Selective Antagonist at Rat and Human Native α7 Nicotinic Acetylcholine Receptors. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 529-537.	1.3	45
38	Glutamate–Dopamine Crosstalk in the Rat Prefrontal Cortex is Modulated by Alpha7 Nicotinic Receptors and Potentiated by PNU-120596. Journal of Molecular Neuroscience, 2010, 40, 172-176.	1.1	43
39	Comparison of the effects of bupropion and nicotine on locomotor activation and dopamine release in vivo. Biochemical Pharmacology, 2007, 74, 1292-1298.	2.0	39
40	The neurotoxin histrionicotoxin interacts with the putative ion channel of the nicotinic acetylcholine receptors in the central nervous system. FEBS Letters, 1987, 212, 292-296.	1.3	37
41	Conversion of the sodium channel activator aconitine into a potent $\hat{l}\pm7$ -selective nicotinic ligand. FEBS Letters, 1995, 365, 79-82.	1.3	37
42	Effects of chronic drug treatments on increases in intracellular calcium mediated by nicotinic acetylcholine receptors in SH-SY5Y cells. British Journal of Pharmacology, 2002, 135, 1051-1059.	2.7	37
43	Drug discrimination and neurochemical studies in α7 null mutant mice: tests for the role of nicotinic α7 receptors in dopamine release. Psychopharmacology, 2009, 203, 399-410.	1.5	37
44	Involvement of protein kinase C in the presynaptic nicotinic modulation of [3 H]-dopamine release from rat striatal synaptosomes. British Journal of Pharmacology, 2001, 132, 785-791.	2.7	32
45	Functional responses and subunit composition of presynaptic nicotinic receptor subtypes explored using the novel agonist 5-iodo-A-85380. Neuropharmacology, 2004, 47, 848-859.	2.0	31
46	Unlocking Nicotinic Selectivity via Direct C‒H Functionalization of (â^')-Cytisine. CheM, 2018, 4, 1710-1725.	5.8	31
47	C3-halogenation of cytisine generates potent and efficacious nicotinic receptor agonists. European Journal of Pharmacology, 2006, 536, 1-11.	1.7	29
48	Inhibition of alpha7 nicotinic receptors in the ventral hippocampus selectively attenuates reinstatement of morphineâ€conditioned place preference and associated changes in AMPA receptor binding. Addiction Biology, 2019, 24, 590-603.	1.4	28
49	In vivo modulation of dopaminergic nigrostriatal pathways by cytisine derivatives: Implications for Parkinson's Disease. European Journal of Pharmacology, 2008, 589, 80-84.	1.7	26
50	6-Substituted 2-azabicyclo[2.2.1]hept-5-enes by nitrogen-directed radical rearrangement: synthesis of an epibatidine analogue with high binding affinity at the nicotinic acetylcholine receptorElectronic supplementary information (ESI) available: details of biological studies. See http://www.rsc.org/suppdata/p1/b1/b107414h/. Journal of the Chemical Society, Perkin Transactions 1,	1.3	25
51	2001, 3150-3158. A General Mechanism for Signal Propagation in the Nicotinic Acetylcholine Receptor Family. Journal of the American Chemical Society, 2019, 141, 19953-19958.	6.6	25
52	Alpha bungarotoxin-1.4nm gold: a novel conjugate for visualising the precise subcellular distribution of alpha 7* nicotinic acetylcholine receptors. Journal of Neuroscience Methods, 2004, 134, 65-74.	1.3	24
53	Nicotinic Acetylcholine Receptors Control Encoding and Retrieval of Associative Recognition Memory through Plasticity in the Medial Prefrontal Cortex. Cell Reports, 2018, 22, 3409-3415.	2.9	24
54	Identification of the Initial Steps in Signal Transduction in the $\hat{l}\pm4\hat{l}^22$ Nicotinic Receptor: Insights from Equilibrium and Nonequilibrium Simulations. Structure, 2019, 27, 1171-1183.e3.	1.6	24

#	Article	IF	Citations
55	Integration of inhibitory and excitatory effects of $\hat{i}\pm7$ nicotinic acetylcholine receptor activation in the prelimbic cortex regulates network activity and plasticity. Neuropharmacology, 2016, 105, 618-629.	2.0	21
56	In silico characterization of cytisinoids docked into an acetylcholine binding protein. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3683-3687.	1.0	20
57	Development of an anti-cotinine vaccine to potentiate nicotine-based smoking cessation strategies. Vaccine, 2007, 25, 7354-7362.	1.7	18
58	Structure-activity studies of bicyclic and tricyclic analogues of methyllycaconitine. Biochemical Society Transactions, 1997, 25, 545S-545S.	1.6	17
59	Alkyl-modified side chain variants of anatoxin-a: A series of potent nicotinic agonists. Drug Development Research, 1994, 31, 147-156.	1.4	16
60	Pharmacological Differences Between Rat Frontal Cortex and Hippocampus in the Nicotinic Modulation of Noradrenaline Release Implicate Distinct Receptor Subtypes. Nicotine and Tobacco Research, 2012, 14, 1339-1345.	1.4	16
61	Nicotinic acetylcholine receptors in primary cultures of hippocampal neurons: pharmacology and Ca++ permeability. Biochemical Society Transactions, 1994, 22, 294S-294S.	1.6	15
62	Interrelationship of Concanavalin-A-Binding and Antigenic Sites on the Acetylcholine Receptor from Torpedo marmorata. FEBS Journal, 1980, 108, 621-629.	0.2	13
63	Comparison of the effects of bupropion on nicotinic receptor-evoked [3H]dopamine release from rat striatal synaptosomes and slices. European Journal of Pharmacology, 2007, 567, 102-109.	1.7	11
64	Characterisation of the relationship between binding sites for imidacloprid and other nicotinic ligands in insects. Pest Management Science, 1999, 55, 1029-1031.	0.7	9
65	Acetylcholine. , 2012, , 258-282.		9
66	Oligomerisation differentially affects the acute and chronic actions of amyloid- \hat{l}^2 in vitro. Neuropharmacology, 2010, 59, 343-352.	2.0	8
67	Nicotine: not just for cigarettes anymore. Drug Discovery Today, 1999, 4, 490-492.	3.2	7
68	Sazetidine-A Activates and Desensitizes Native $\hat{l}\pm7$ Nicotinic Acetylcholine Receptors. Neurochemical Research, 2015, 40, 2047-2054.	1.6	7
69	Presynaptic nicotinic autoreceptors in rat hippocampus. Biochemical Society Transactions, 1985, 13, 164-165.	1.6	6
70	Separation of pre- and post-synaptic receptors on Percoll gradients. Biochemical Society Transactions, 1990, 18, 885-886.	1.6	6
71	Selective Probes for Nicotinic Acetylcholine Receptors from Substituted AE-Bicyclic Analogs of Methyllycaconitine. ACS Symposium Series, 1998, , 194-205.	0.5	6
72	Increase in locomotor activity after acute administration of the nicotinic receptor agonist 3-bromocytisine in rats. European Journal of Pharmacology, 2010, 634, 89-94.	1.7	6

#	Article	IF	CITATIONS
73	A conserved arginine with nonâ€conserved function is a key determinant of agonist selectivity in α7 nicotinic ACh receptors. British Journal of Pharmacology, 2021, 178, 1651-1668.	2.7	6
74	Subcellular fractionation and distribution of cholinergic binding sites in fetal human brain. Neurochemical Research, 1986, 11, 1011-1023.	1.6	5
75	The relevance of receptor binding studies to tobacco research. Addiction, 1991, 86, 537-541.	1.7	5
76	Differential upregulation of $\hat{l}\pm7$ and $\hat{l}\pm3$ subunit-containing nicotinic acetylcholine receptors in rat hippocampal and PC12 cell cultures. Biochemical Society Transactions, 1997, 25, 544S-544S.	1.6	5
77	Comparison of the effects of neosurugatoxin and $\hat{l}\pm$ -bungarotoxin on nicotinic acetylcholine receptors in rat brain. Biochemical Society Transactions, 1985, 13, 1212-1213.	1.6	3
78	Inhibition by anti-(nicotinic acetylcholine receptor) antibodies of acetylcholine-induced dopamine release from striatal nerve terminals. Biochemical Society Transactions, 1981, 9, 410-411.	1.6	2
79	lon fluxes associated with transmitter release in perfused synaptosomes. Biochemical Society Transactions, 1986, 14, 598-599.	1.6	2
80	Pharmacology of nicotinic acetylcholine receptor (nAChR) upregulation in the transfected cell line, M10. Biochemical Society Transactions, 1997, 25, 550S-550S.	1.6	2
81	A new synthesis and preliminary evaluation of some analogues of mecamylamine $\hat{a}\in$ a compound with anti-addiction properties. Organic and Biomolecular Chemistry, 2016, 14, 10787-10798.	1.5	2
82	Comparison of 125I-α-bugarotoxin and (–)-[3H]nicotine binding in insect ganglia. Biochemical Society Transactions, 1987, 15, 500-501.	1.6	1
83	Ethyl-for-methyl substitution enhances the subtype specificity of mecamylamine analogues. Organic and Biomolecular Chemistry, 2019, 17, 9892-9905.	1.5	0