Junli Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4203560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phaseâ€Controlled Synthesis of Transitionâ€Metal Phosphide Nanowires by Ullmannâ€Type Reactions. Chemistry - A European Journal, 2010, 16, 7916-7924.	3.3	102
2	Synthesis of carbon-doped g-C3N4 composites with enhanced visible-light photocatalytic activity. Materials Letters, 2014, 137, 281-284.	2.6	95
3	Solution–Solid–Solid Mechanism: Superionic Conductors Catalyze Nanowire Growth. Nano Letters, 2013, 13, 3996-4000.	9.1	84
4	Tetragonal–Orthorhombic–Cubic Phase Transitions in Ag ₂ Se Nanocrystals. Chemistry of Materials, 2014, 26, 5647-5653.	6.7	69
5	Scalable colloidal synthesis of uniform Bi ₂ S ₃ nanorods as sensitive materials for visible-light photodetectors. CrystEngComm, 2017, 19, 727-733.	2.6	42
6	A ratiometric fluorescent probe for highly selective and sensitive detection of hypochlorite based on the oxidation of N-alkylpyridinium. RSC Advances, 2014, 4, 59535-59540.	3.6	41
7	Solution-Processed Sb ₂ Se ₃ on TiO ₂ Thin Films Toward Oxidation- and Moisture-Resistant, Self-Powered Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 38341-38349.	8.0	32
8	Seed-catalyzed heteroepitaxial growth and nonlinear optical properties of zinc selenide nanowires. Journal of Materials Chemistry, 2012, 22, 10009.	6.7	29
9	Solution-phase catalytic synthesis, characterization and growth kinetics of Ag ₂ S–CdS matchstick-like heteronanostructures. Dalton Transactions, 2014, 43, 3990-3998.	3.3	28
10	Composition-Dependent Aspect Ratio and Photoconductivity of Ternary (Bi _{<i>x</i>} Sb _{1–<i>x</i>}) ₂ S ₃ Nanorods. ACS Applied Materials & Interfaces, 2018, 10, 7334-7343.	8.0	28
11	Solvothermal synthesis and characterization of CdSe nanocrystals with controllable phase and morphology. Journal of Physics and Chemistry of Solids, 2010, 71, 940-945.	4.0	23
12	Plasmonic Bismuth Nanoparticles: Thiolate Pyrolysis Synthesis, Size-Dependent LSPR Property, and Their Oxidation Behavior. Inorganic Chemistry, 2021, 60, 17258-17267.	4.0	22
13	One-Dimensional Angle-Shaped ZnSe Nanostructures: Synthesis and Formation Mechanism. Crystal Growth and Design, 2008, 8, 660-664.	3.0	21
14	Controllable solvothermal synthesis and photocatalytic properties of complex (oxy)fluorides K2TiOF4, K3TiOF5, K7Ti4O4F7 and K2TiF6. Journal of Hazardous Materials, 2009, 171, 279-287.	12.4	18
15	Solution-synthesis of Sb ₂ Se ₃ nanorods using KSeCN as a molecular selenium source. CrystEngComm, 2020, 22, 68-73.	2.6	18
16	Magnetic Fe2P nanowires and Fe2P@C core@shell nanocables. Nano Research, 2010, 3, 211-221.	10.4	17
17	Selective Synthesis of Magnetic Fe ₂ P/C and FeP/C Core/Shell Nanocables. Journal of Physical Chemistry Letters, 2010, 1, 102-106.	4.6	17
18	Seeded-synthesis and characterization of CdS hexagonal nanoplates. Materials Letters, 2013, 104, 87-90.	2.6	16

Junli Wang

#	Article	IF	CITATIONS
19	Binary–Ternary Bi ₂ S ₃ –AgBiS ₂ Rod-to-Rod Transformation via Anisotropic Partial Cation Exchange Reaction. Inorganic Chemistry, 2019, 58, 12998-13006.	4.0	14
20	Synthesis of InP nanofibers from tri(m-tolyl)phosphine: an alternative route to metal phosphidenanostructures. Dalton Transactions, 2010, 39, 227-233.	3.3	12
21	The competition between template growth and catalytic growth of one-dimensional ZnS nanostructures: nanobelts or nanowires. Dalton Transactions, 2013, 42, 7724.	3.3	11
22	lsovalent bismuth ion-induced growth of highly-disperse Sb ₂ S ₃ nanorods and their composite with <i>p</i> -CuSCN for self-powered photodetectors. CrystEngComm, 2019, 21, 554-562.	2.6	11
23	Synthesis of Î ² -Bi2O3 nanoparticles via the oxidation of Bi nanoparticles: Size, shape and polymorph control, anisotropic thermal expansion, and visible-light photocatalytic activity. Ceramics International, 2022, 48, 18270-18277.	4.8	11
24	A developed Ullmann reaction to III–V semiconductor nanocrystals in sealed vacuum tubes. Dalton Transactions, 2008, , 6060.	3.3	10
25	Synthesis and characterization of fluorescent chitosan–ZnSe/ZnS nanoparticles for potential drug carriers. RSC Advances, 2015, 5, 38810-38817.	3.6	10
26	Two-dimensional (2D) amorphous antimony (III) trisulfide nanosheets: Synthesis, photoelectronic property and their transformation to crystalline 1D micro/nanorods. Inorganic Chemistry Communication, 2018, 92, 110-114.	3.9	10
27	Benzene-thermal Route to InP and InAs Nanocrystals Using Triphenylphosphine and Triphenylarsine as Pnicogen Sources. Chemistry Letters, 2008, 37, 306-307.	1.3	9
28	Selective synthesis of ZnS nanowire-bundles and nanowires via different growth mechanisms. Journal of Crystal Growth, 2013, 374, 60-64.	1.5	9
29	Highly uniform matchstick-like Ag2S–ZnS hetero-nanorods using dodecanethiol as a sulfur source. Materials Letters, 2014, 126, 67-70.	2.6	9
30	Growth of One-Dimensional Hierarchical Multilayered Indium Nanostructures. Crystal Growth and Design, 2009, 9, 3036-3043.	3.0	8
31	Catalyst/surfactant co-assisted colloidal synthesis and optical properties of ultrathin/ultralong ZnSe nanowires. Journal of Crystal Growth, 2019, 509, 54-59.	1.5	8
32	Long ZnSe nanowires by a seed-catalytic solution synthesis. Materials Letters, 2012, 80, 29-32.	2.6	6
33	Catalytic synthesis of matchstick-like Ag2Se–ZnSe hetero-nanorods using Ag2S nanocrystals as seeds. Journal of Crystal Growth, 2015, 416, 90-95.	1.5	5
34	Intrinsic Lattice Relationship of Catalyst/Nanowire Interfaces by Heating High-Resolution Transmission Electron Microscopy. Crystal Growth and Design, 2018, 18, 4911-4919.	3.0	5
35	Oleic acid-induced, controllable surface oxidation to enhance the photoresponse performance of Sb ₂ Se ₃ nanorods. CrystEngComm, 2020, 22, 6189-6194.	2.6	5
36	Length and composition tunable Sb–Bi–S nanowires for optoelectronic devices prepared via an isostructure-favored solvothermal synthesis. Journal of Alloys and Compounds, 2020, 831, 154886.	5.5	5

Junli Wang

#	Article	IF	CITATIONS
37	Interfacial N→Sb Nonbonded Interaction Enhances the Photoelectronic Performance of PVPâ€Capped Sb ₂ S ₃ Amorphous Colloids. ChemNanoMat, 2018, 4, 1160-1167.	2.8	3
38	Bismuth Sulfide (Bi2S3) Nanorods as Efficient Photodetection Materials. , 2016, , .		2
39	Growth of MSe semiconductor nanowires on metal substrates through an Ag ₂ Se-catalyzed solution–solid–solid mechanism (M = Zn, Cd and Mn). CrystEngComm, 2021, 23, 6899-6908.	2.6	1
40	Selenium and sulfur inhomogeneity in free-standing ternary Sb2(Se,S)3 alloyed nanorods. CrystEngComm, 2020, 22, 6019-6025.	2.6	0