Samuel Clifford

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4202999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using trained dogs and organic semi-conducting sensors to identify asymptomatic and mild SARS-CoV-2 infections: an observational study. Journal of Travel Medicine, 2022, 29, .	1.4	18
2	Travel measures in the SARS-CoV-2 variant era need clear objectives. Lancet, The, 2022, 399, 1367-1369.	6.3	17
3	Association of pneumococcal carriage in infants with the risk of carriage among their contacts in Nha Trang, Vietnam: A nested cross-sectional survey. PLoS Medicine, 2022, 19, e1004016.	3.9	7
4	Ultrafine particle exposure and biomarkers of effect on small airways in children. Environmental Research, 2022, 214, 113860.	3.7	3
5	Effect of internationally imported cases on internal spread of COVID-19: a mathematical modelling study. Lancet Public Health, The, 2021, 6, e12-e20.	4.7	153
6	Quarantine and testing strategies in contact tracing for SARS-CoV-2: a modelling study. Lancet Public Health, The, 2021, 6, e175-e183.	4.7	156
7	Estimation of country-level incidence of early-onset invasive Group B Streptococcus disease in infants using Bayesian methods. PLoS Computational Biology, 2021, 17, e1009001.	1.5	3
8	Strategies to reduce the risk of SARS-CoV-2 importation from international travellers: modelling estimations for the United Kingdom, July 2020. Eurosurveillance, 2021, 26, .	3.9	20
9	New insights into the spatial distribution of particle number concentrations by applying non-parametric land use regression modelling. Science of the Total Environment, 2020, 702, 134708.	3.9	18
10	Monitoring through many eyes: Integrating disparate datasets to improve monitoring of the Great Barrier Reef. Environmental Modelling and Software, 2020, 124, 104557.	1.9	9
11	Reconstructing the early global dynamics of under-ascertained COVID-19 cases and infections. BMC Medicine, 2020, 18, 332.	2.3	129
12	Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: a modelling study. Lancet Public Health, The, 2020, 5, e375-e385.	4.7	730
13	COVID-19 length of hospital stay: a systematic review and data synthesis. BMC Medicine, 2020, 18, 270.	2.3	430
14	The effect of travel restrictions on the geographical spread of COVID-19 between large cities in China: a modelling study. BMC Medicine, 2020, 18, 259.	2.3	28
15	Effectiveness of interventions targeting air travellers for delaying local outbreaks of SARS-CoV-2. Journal of Travel Medicine, 2020, 27, .	1.4	39
16	Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infectious Diseases, The, 2020, 20, 553-558.	4.6	1,999
17	The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Health, The, 2020, 5, e261-e270.	4.7	1,600
18	Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. The Lancet Global Health, 2020, 8, e488-e496.	2.9	2,067

SAMUEL CLIFFORD

#	Article	IF	CITATIONS
19	Inferring the number of COVID-19 cases from recently reported deaths. Wellcome Open Research, 2020, 5, 78.	0.9	31
20	Effectiveness of airport screening at detecting travellers infected with novel coronavirus (2019-nCoV). Eurosurveillance, 2020, 25, .	3.9	251
21	Bayesian Modelling to Assist Inference on Health Outcomes in Occupational Health Surveillance. Lecture Notes in Mathematics, 2020, , 327-343.	0.1	Ο
22	Evaluating health facility access using Bayesian spatial models and location analysis methods. PLoS ONE, 2019, 14, e0218310.	1.1	7
23	A population of bang-bang switches of defective interfering particles makes within-host dynamics of dengue virus controllable. PLoS Computational Biology, 2019, 15, e1006668.	1.5	12
24	A Bayesian spatiotemporal model of panel design data: Airborne particle number concentration in Brisbane, Australia. Environmetrics, 2019, 30, e2597.	0.6	5
25	Serostatus testing and dengue vaccine cost–benefit thresholds. Journal of the Royal Society Interface, 2019, 16, 20190234.	1.5	12
26	Characteristics of school children's personal exposure to ultrafine particles in Heshan, Pearl River Delta, China – A pilot study. Environment International, 2019, 132, 105134.	4.8	26
27	Health care worker vaccination against Ebola: Vaccine acceptance and employment duration in Sierra Leone. Vaccine, 2019, 37, 1101-1108.	1.7	10
28	Using virtual reality and thermal imagery to improve statistical modelling of vulnerable and protected species. PLoS ONE, 2019, 14, e0217809.	1.1	8
29	Effects of exposure to ambient ultrafine particles on respiratory health and systemic inflammation in children. Environment International, 2018, 114, 167-180.	4.8	85
30	Estimating the spatiotemporal variation of NO2 concentration using an adaptive neuro-fuzzy inference system. Environmental Modelling and Software, 2018, 100, 222-235.	1.9	40
31	Influence of Spatial Aggregation on Prediction Accuracy of Green Vegetation Using Boosted Regression Trees. Remote Sensing, 2018, 10, 1260.	1.8	5
32	Investigations into factors affecting personal exposure to particles in urban microenvironments using low-cost sensors. Environment International, 2018, 120, 496-504.	4.8	40
33	Using virtual reality to estimate aesthetic values of coral reefs. Royal Society Open Science, 2018, 5, 172226.	1.1	14
34	Joint-level energetics differentiate isoinertial from speed-power resistance training—a Bayesian analysis. PeerJ, 2018, 6, e4620.	0.9	1
35	Identification of technical problems affecting performance of DustTrak DRX aerosol monitors. Science of the Total Environment, 2017, 584-585, 849-855.	3.9	50
36	A satellite-based model for estimating PM2.5 concentration in a sparsely populated environment using soft computing techniques. Environmental Modelling and Software, 2017, 88, 84-92.	1.9	39

SAMUEL CLIFFORD

#	Article	IF	CITATIONS
37	Modelling imperfect presence data obtained by citizen science. Environmetrics, 2017, 28, e2446.	0.6	19
38	Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environment International, 2017, 108, 75-83.	4.8	256
39	Development of a land use regression model for daily NO 2 and NO x concentrations in the Brisbane metropolitan area, Australia. Environmental Modelling and Software, 2017, 95, 168-179.	1.9	32
40	Nocturnal new particle formation events in urban environments. Atmospheric Chemistry and Physics, 2017, 17, 521-530.	1.9	27
41	Estimate of main local sources to ambient ultrafine particle number concentrations in an urban area. Atmospheric Research, 2017, 194, 178-189.	1.8	25
42	Using Boosted Regression Trees and Remotely Sensed Data to Drive Decision-Making. Open Journal of Statistics, 2017, 07, 859-875.	0.3	22
43	Virtual reality for conservation. , 2016, , .		7
44	Endotoxin levels and contribution factors of endotoxins in resident, school, and office environments $\hat{a} \in $ A review. Atmospheric Environment, 2016, 142, 360-369.	1.9	25
45	Application of multi-metric approach to characterization of particle emissions from nanotechnology and non-nanotechnology processes. Journal of Occupational and Environmental Hygiene, 2016, 13, D175-D197.	0.4	5
46	Children's well-being at schools: Impact of climatic conditions and air pollution. Environment International, 2016, 94, 196-210.	4.8	128
47	Ultrafine Particles from Traffic Emissions and Children's Health (UPTECH) in Brisbane, Queensland (Australia): Study Design and Implementation. International Journal of Environmental Research and Public Health, 2015, 12, 1687-1702.	1.2	22
48	Airborne culturable fungi in naturally ventilated primary school environments in a subtropical climate. Atmospheric Environment, 2015, 106, 412-418.	1.9	23
49	Airborne viable fungi in school environments in different climatic regions – A review. Atmospheric Environment, 2015, 104, 186-194.	1.9	34
50	Polybrominated diphenyl ethers (PBDEs) in dust from primary schools in South East Queensland, Australia. Environmental Research, 2015, 142, 135-140.	3.7	27
51	Children's personal exposure to air pollution in rural villages in Bhutan. Environmental Research, 2015, 140, 691-698.	3.7	26
52	Recent Bayesian approaches for spatial analysis of 2-D images with application to environmental modelling. Environmental and Ecological Statistics, 2015, 22, 571-600.	1.9	5
53	Atmospheric Visibility and PM10 as Indicators of New Particle Formation in an Urban Environment. Environmental Science & Technology, 2015, 49, 12751-12757.	4.6	13
54	Characterisation of a Commercially Available Thermodenuder and Diffusion Drier for Ultrafine Particles Losses. Aerosol and Air Quality Research, 2015, 15, 357-363.	0.9	13

SAMUEL CLIFFORD

#	Article	IF	CITATIONS
55	Are There Generalizable Trends in the Release of Airborne Synthetic Clay Nanoparticles from a Jet Milling Process?. Aerosol and Air Quality Research, 2015, 15, 365-375.	0.9	3
56	Characteristics of ultrafine particle sources and deposition rates in primary school classrooms. Atmospheric Environment, 2014, 94, 28-35.	1.9	39
57	School Children's Personal Exposure to Ultrafine Particles in the Urban Environment. Environmental Science & Technology, 2014, 48, 113-120.	4.6	91
58	Assessment and application of clustering techniques to atmospheric particle number size distribution for the purpose of source apportionment. Atmospheric Chemistry and Physics, 2014, 14, 11883-11892.	1.9	38
59	Evaluation of a statistical forecast model for size-fractionated urban particle number concentrations using data from five European cities. Journal of Aerosol Science, 2013, 66, 96-110.	1.8	19
60	Endotoxins in Indoor Air and Settled Dust in Primary Schools in a Subtropical Climate. Environmental Science & Technology, 2013, 47, 9882-9890.	4.6	21
61	Spatial Variation of Particle Number Concentration in School Microscale Environments and Its Impact on Exposure Assessment. Environmental Science & amp; Technology, 2013, 47, 5251-5258.	4.6	36
62	Using the Generalised Additive Model to model the particle number count of ultrafine particles. Atmospheric Environment, 2011, 45, 5934-5945.	1.9	41
63	Designing a multi-layered surveillance approach to detecting SARS-CoV-2: A modelling study. Wellcome Open Research, 0, 5, 218.	0.9	0