
Francjan J Van Spronsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4202423/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic control during the neonatal period in phenylketonuria: associations with childhood IQ. Pediatric Research, 2022, 91, 874-878.	2.3	5
2	Towards Next-Generation Sequencing (NGS)-Based Newborn Screening: A Technical Study to Prepare for the Challenges Ahead. International Journal of Neonatal Screening, 2022, 8, 17.	3.2	15
3	Dietary treatment in Dutch children with phenylketonuria: An inventory of associated social restrictions and eating problems. Nutrition, 2022, 97, 111576.	2.4	8
4	Caring for Ukrainian refugee children with acute and chronic diseases. Lancet, The, 2022, 399, 1689.	13.7	4
5	Age dependency of plasma vitamin B12 status markers in Dutch children and adolescents. Pediatric Research, 2021, 90, 1058-1064.	2.3	7
6	A generic emergency protocol for patients with inborn errors of metabolism causing fasting intolerance: A retrospective, singleâ€center study and the generation of www.emergencyprotocol.net. Journal of Inherited Metabolic Disease, 2021, 44, 1124-1135.	3.6	10
7	Phenylketonuria. Nature Reviews Disease Primers, 2021, 7, 36.	30.5	174
8	Undiagnosed Phenylketonuria Can Exist Everywhere: Results From an International Survey. Journal of Pediatrics, 2021, 239, 231-234.e2.	1.8	9
9	Preventive use of nitisinone in alkaptonuria. Orphanet Journal of Rare Diseases, 2021, 16, 343.	2.7	12
10	Correlations of blood and brain biochemistry in phenylketonuria: Results from the Pah-enu2 PKU mouse. Molecular Genetics and Metabolism, 2021, 134, 250-256.	1.1	8
11	Gut-Microbiome Composition in Response to Phenylketonuria Depends on Dietary Phenylalanine in BTBR Pahenu2 Mice. Frontiers in Nutrition, 2021, 8, 735366.	3.7	4
12	Predictability and inconsistencies of cognitive outcome in patients with phenylketonuria and personalised therapy: the challenge for the future guidelines. Journal of Medical Genetics, 2020, 57, 145-150.	3.2	24
13	Tetrahydrobiopterin treatment in phenylketonuria: A repurposing approach. Journal of Inherited Metabolic Disease, 2020, 43, 189-199.	3.6	8
14	The first European guidelines on phenylketonuria: Usefulness and implications for BH 4 responsiveness testing. Journal of Inherited Metabolic Disease, 2020, 43, 244-250.	3.6	11
15	Bone mineral density is within normal range in most adult phenylketonuria patients. Journal of Inherited Metabolic Disease, 2020, 43, 251-258.	3.6	8
16	Efficacy and safety of D,L-3-hydroxybutyrate (D,L-3-HB) treatment in multiple acyl-CoA dehydrogenase deficiency. Genetics in Medicine, 2020, 22, 908-916.	2.4	19
17	Does the 48-hour BH4 loading test miss responsive PKU patients?. Molecular Genetics and Metabolism, 2020, 129, 186-192.	1.1	6
18	Retrospective evaluation of the Dutch preâ€newborn screening cohort for propionic acidemia and isolated methylmalonic acidemia: What to aim, expect, and evaluate from newborn screening?. Journal of Inherited Metabolic Disease, 2020, 43, 424-437.	3.6	18

#	Article	IF	CITATIONS
19	Aspartame and Phe-Containing Degradation Products in Soft Drinks across Europe. Nutrients, 2020, 12, 1887.	4.1	7
20	The Genetic Landscape and Epidemiology of Phenylketonuria. American Journal of Human Genetics, 2020, 107, 234-250.	6.2	138
21	Evaluation of 11 years of newborn screening for maple syrup urine disease in the Netherlands and a systematic review of the literature: Strategies for optimization. JIMD Reports, 2020, 54, 68-78.	1.5	12
22	A Microbial Community Ecology Perspective on the Gut-Microbiome-Brain Axis. Frontiers in Endocrinology, 2020, 11, 611.	3.5	7
23	Treating neutropenia and neutrophil dysfunction in glycogen storage disease type Ib with an SGLT2 inhibitor. Blood, 2020, 136, 1033-1043.	1.4	90
24	Dried blood spot versus venous blood sampling for phenylalanine and tyrosine. Orphanet Journal of Rare Diseases, 2020, 15, 82.	2.7	20
25	Hippocampal microglia modifications in C57Bl/6 Pah and BTBR Pah phenylketonuria (PKU) mice depend on the genetic background, irrespective of disturbed sleep patterns. Neurobiology of Learning and Memory, 2019, 160, 139-143.	1.9	8
26	Changes in pediatric plasma acylcarnitines upon fasting for refined interpretation of metabolic stress. Molecular Genetics and Metabolism, 2019, 127, 327-335.	1.1	5
27	Blood and Brain Biochemistry and Behaviour in NTBC and Dietary Treated Tyrosinemia Type 1 Mice. Nutrients, 2019, 11, 2486.	4.1	6
28	Long-Term Outcomes and Practical Considerations in the Pharmacological Management of Tyrosinemia Type 1. Paediatric Drugs, 2019, 21, 413-426.	3.1	31
29	Biomarkers of Micronutrients in Regular Follow-Up for Tyrosinemia Type 1 and Phenylketonuria Patients. Nutrients, 2019, 11, 2011.	4.1	5
30	The Benefit of Large Neutral Amino Acid Supplementation to a Liberalized Phenylalanine-Restricted Diet in Adult Phenylketonuria Patients: Evidence from Adult Pah-Enu2 Mice. Nutrients, 2019, 11, 2252.	4.1	8
31	The neurological and psychological phenotype of adult patients with earlyâ€ŧreated phenylketonuria: A systematic review. Journal of Inherited Metabolic Disease, 2019, 42, 209-219.	3.6	42
32	Over Restriction of Dietary Protein Allowance: The Importance of Ongoing Reassessment of Natural Protein Tolerance in Phenylketonuria. Nutrients, 2019, 11, 995.	4.1	13
33	A nationwide retrospective observational study of population newborn screening for mediumâ€chain acyl oA dehydrogenase (MCAD) deficiency in the Netherlands. Journal of Inherited Metabolic Disease, 2019, 42, 890-897.	3.6	21
34	International best practice for the evaluation of responsiveness to sapropterin dihydrochloride in patients with phenylketonuria. Molecular Genetics and Metabolism, 2019, 127, 1-11.	1.1	44
35	Long-term dietary intervention with low Phe and/or a specific nutrient combination improve certain aspects of brain functioning in phenylketonuria (PKU). PLoS ONE, 2019, 14, e0213391.	2.5	6
36	The Effect of Glycomacropeptide versus Amino Acids on Phenylalanine and Tyrosine Variability over 24 Hours in Children with PKU: A Randomized Controlled Trial. Nutrients, 2019, 11, 520.	4.1	18

#	Article	IF	CITATIONS
37	Untreated PKU Patients without Intellectual Disability: What Do They Teach Us?. Nutrients, 2019, 11, 2572.	4.1	16
38	The Effect of Various Doses of Phenylalanine Supplementation on Blood Phenylalanine and Tyrosine Concentrations in Tyrosinemia Type 1 Patients. Nutrients, 2019, 11, 2816.	4.1	6
39	Emotional and behavioral problems, quality of life and metabolic control in NTBC-treated Tyrosinemia type 1 patients. Orphanet Journal of Rare Diseases, 2019, 14, 285.	2.7	19
40	Optimising amino acid absorption: essential to improve nitrogen balance and metabolic control in phenylketonuria. Nutrition Research Reviews, 2019, 32, 70-78.	4.1	44
41	A preliminary study of telemedicine for patients with hepatic glycogen storage disease and their healthcare providers: from bedside to home site monitoring. Journal of Inherited Metabolic Disease, 2018, 41, 929-936.	3.6	8
42	Response to the Letter to the Editor Regarding "Micronutrients, Essential Fatty Acids and Bone Health in Phenylketonuria― Annals of Nutrition and Metabolism, 2018, 72, 80-81.	1.9	1
43	Daily variation of NTBC and its relation to succinylacetone in tyrosinemia type 1 patients comparing a single dose to two doses a day. Journal of Inherited Metabolic Disease, 2018, 41, 181-186.	3.6	17
44	Large neutral amino acid supplementation as an alternative to the phenylalanine-restricted diet in adults with phenylketonuria: evidence from adult Pah-enu2 mice. Journal of Nutritional Biochemistry, 2018, 53, 20-27.	4.2	19
45	Autism spectrum disorder: an early and frequent feature in cerebrotendinous xanthomatosis. Journal of Inherited Metabolic Disease, 2018, 41, 641-646.	3.6	19
46	Molybdenum cofactor deficiency type A: Prenatal monitoring using MRI. European Journal of Paediatric Neurology, 2018, 22, 536-540.	1.6	5
47	Heterogeneous clinical spectrum of DNAJC12-deficient hyperphenylalaninemia: from attention deficit to severe dystonia and intellectual disability. Journal of Medical Genetics, 2018, 55, 249-253.	3.2	29
48	Can untreated PKU patients escape from intellectual disability? A systematic review. Orphanet Journal of Rare Diseases, 2018, 13, 149.	2.7	36
49	Pathogenic variants in glutamyl-tRNAGIn amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder. Nature Communications, 2018, 9, 4065.	12.8	44
50	The potential role of gut microbiota and its modulators in the management of propionic and methylmalonic acidemia. Expert Opinion on Orphan Drugs, 2018, 6, 683-692.	0.8	4
51	Anthropomorphic measurements and nutritional biomarkers after 5†years of BH 4 treatment in phenylketonuria patients. Molecular Genetics and Metabolism, 2018, 124, 238-242.	1.1	7
52	Integrating glycomics and genomics uncovers SLC10A7 as essential factor for bone mineralization by regulating post-Golgi protein transport and glycosylation. Human Molecular Genetics, 2018, 27, 3029-3045.	2.9	37
53	Renal thrombotic microangiopathy in patients with cblC defect: review of an under-recognized entity. Pediatric Nephrology, 2017, 32, 733-741.	1.7	76
54	Key European guidelines for the diagnosis and management of patients with phenylketonuria. Lancet Diabetes and Endocrinology,the, 2017, 5, 743-756.	11.4	272

FRANCJAN J VAN SPRONSEN

#	Article	IF	CITATIONS
55	What Is the Best Blood Sampling Time for Metabolic Control of Phenylalanine and Tyrosine Concentrations in Tyrosinemia Type 1 Patients?. JIMD Reports, 2017, 36, 49-57.	1.5	11
56	lssues with European guidelines for phenylketonuria – Authors' reply. Lancet Diabetes and Endocrinology,the, 2017, 5, 683-684.	11.4	8
57	Neurological and Neuropsychological Problems in Tyrosinemia Type I Patients. Advances in Experimental Medicine and Biology, 2017, 959, 111-122.	1.6	32
58	Liver Cancer in Tyrosinemia Type 1. Advances in Experimental Medicine and Biology, 2017, 959, 101-109.	1.6	32
59	Dietary Considerations in Tyrosinemia Type I. Advances in Experimental Medicine and Biology, 2017, 959, 197-204.	1.6	18
60	Long-Term Follow-Up of Cognition and Mental Health in Adult Phenylketonuria: A PKU-COBESO Study. Behavior Genetics, 2017, 47, 486-497.	2.1	31
61	Allelic Expression Imbalance Promoting a Mutant PEX6 Allele Causes Zellweger Spectrum Disorder. American Journal of Human Genetics, 2017, 101, 965-976.	6.2	41
62	Sleep Disturbances in Phenylketonuria: An Explorative Study in Men and Mice. Frontiers in Neurology, 2017, 8, 167.	2.4	12
63	Cognitive profile and mental health in adult phenylketonuria: A PKU-COBESO study Neuropsychology, 2017, 31, 437-447.	1.3	46
64	Presumptive brain influx of large neutral amino acids and the effect of phenylalanine supplementation in patients with Tyrosinemia type 1. PLoS ONE, 2017, 12, e0185342.	2.5	8
65	A Specific Nutrient Combination Attenuates the Reduced Expression of PSD-95 in the Proximal Dendrites of Hippocampal Cell Body Layers in a Mouse Model of Phenylketonuria. Nutrients, 2016, 8, 185.	4.1	10
66	Neurocognitive outcome in tyrosinemia type 1 patients compared to healthy controls. Orphanet Journal of Rare Diseases, 2016, 11, 87.	2.7	60
67	Therapeutic brain modulation with targeted large neutral amino acid supplements in the Pah-enu2 phenylketonuria mouse model. American Journal of Clinical Nutrition, 2016, 104, 1292-1300.	4.7	35
68	Neonates at risk of medium-chain acyl-CoA dehydrogenase deficiency: a perinatal protocol for use before population neonatal screening test results become available. Genetics in Medicine, 2016, 18, 1322-1323.	2.4	2
69	Occurrence of subdural hematomas in Dutch glutaric aciduria type 1 patients. European Journal of Pediatrics, 2016, 175, 1001-1006.	2.7	21
70	The neonatal tetrahydrobiopterin loading test in phenylketonuria: what is the predictive value?. Orphanet Journal of Rare Diseases, 2016, 11, 10.	2.7	8
71	Neonatal screening for profound biotinidase deficiency in the Netherlands: consequences and considerations. European Journal of Human Genetics, 2016, 24, 1424-1429.	2.8	17
72	Socialâ€cognitive functioning and social skills in patients with early treated phenylketonuria: a PKU C0BESO study. Journal of Inherited Metabolic Disease, 2016, 39, 355-362.	3.6	57

FRANCJAN J VAN SPRONSEN

#	Article	IF	CITATIONS
73	Reliable Diagnosis of Carnitine Palmitoyltransferase Type IA Deficiency by Analysis of Plasma Acylcarnitine Profiles. JIMD Reports, 2016, 32, 33-39.	1.5	10
74	Diagnostic and management practices for phenylketonuria in 19 countries of the South and Eastern European Region: survey results. European Journal of Pediatrics, 2016, 175, 261-272.	2.7	23
75	Acute exercise in treated phenylketonuria patients: Physical activity and biochemical response. Molecular Genetics and Metabolism Reports, 2015, 5, 55-59.	1.1	11
76	Is BRIEF a useful instrument in day to day care of patients with phenylketonuria?. Molecular Genetics and Metabolism, 2015, 114, 425-430.	1.1	9
77	BH4 treatment in BH4-responsive PKU patients: preliminary data on blood prolactin concentrations suggest increased cerebral dopamine concentrations. Molecular Genetics and Metabolism, 2015, 114, 29-33.	1.1	17
78	Tetrahydrobiopterin (BH4) responsiveness in neonates with hyperphenylalaninemia: A semi-mechanistically-based, nonlinear mixed-effect modeling. Molecular Genetics and Metabolism, 2015, 114, 564-569.	1.1	7
79	Hepatocellular Carcinoma in Tyrosinemia Type 1 Without Clear Increase of AFP. Pediatrics, 2015, 135, e749-e752.	2.1	25
80	Voluntary Exercise Prevents Oxidative Stress in the Brain of Phenylketonuria Mice. JIMD Reports, 2015, 27, 69-77.	1.5	14
81	Efficacy and safety of cyclic pyranopterin monophosphate substitution in severe molybdenum cofactor deficiency type A: a prospective cohort study. Lancet, The, 2015, 386, 1955-1963.	13.7	122
82	Normoglycemic Ketonemia as Biochemical Presentation in Ketotic Glycogen Storage Disease. JIMD Reports, 2015, 28, 41-47.	1.5	15
83	Phenylketonuria: Brain Phenylalanine Concentrations Relate Inversely to Cerebral Protein Synthesis. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 200-205.	4.3	16
84	Large Neutral Amino Acid Supplementation Exerts Its Effect through Three Synergistic Mechanisms: Proof of Principle in Phenylketonuria Mice. PLoS ONE, 2015, 10, e0143833.	2.5	59
85	Infants with Tyrosinemia Type 1: Should phenylalanine be supplemented?. JIMD Reports, 2014, 18, 117-124.	1.5	33
86	Single amino acid supplementation in aminoacidopathies: a systematic review. Orphanet Journal of Rare Diseases, 2014, 9, 7.	2.7	23
87	Cross-sectional study of 168 patients with hepatorenal tyrosinaemia and implications for clinical practice. Orphanet Journal of Rare Diseases, 2014, 9, 107.	2.7	110
88	Impaired Cognitive Functioning in Patients with Tyrosinemia Type I Receiving Nitisinone. Journal of Pediatrics, 2014, 164, 398-401.	1.8	71
89	Guanidinoacetate methyltransferase (GAMT) deficiency: Outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Molecular Genetics and Metabolism, 2014, 111, 16-25.	1.1	111
90	Neurocognitive Evidence for Revision of Treatment Targets and Guidelines for Phenylketonuria. Journal of Pediatrics, 2014, 164, 895-899.e2.	1.8	64

FRANCJAN J VAN SPRONSEN

#	Article	IF	CITATIONS
91	Recombinant phenylalanine ammonia lyase in phenylketonuria. Lancet, The, 2014, 384, 6-8.	13.7	10
92	Tetrahydrobiopterin responsiveness in phenylketonuria: prediction with the 48-hour loading test and genotype. Orphanet Journal of Rare Diseases, 2013, 8, 103.	2.7	33
93	Long-term Follow-up and Outcome of Phenylketonuria Patients on Sapropterin: A Retrospective Study. Pediatrics, 2013, 131, e1881-e1888.	2.1	68
94	Mental health and social functioning in early treated Phenylketonuria: The PKU-COBESO study. Molecular Genetics and Metabolism, 2013, 110, S57-S61.	1.1	32
95	Phenylketonuria: reduced tyrosine brain influx relates to reduced cerebral protein synthesis. Orphanet Journal of Rare Diseases, 2013, 8, 133.	2.7	35
96	Fluctuations in phenylalanine concentrations in phenylketonuria: A review of possible relationships with outcomes. Molecular Genetics and Metabolism, 2013, 110, 418-423.	1.1	69
97	Dietary treatment in phenylketonuria does not lead to increased risk of obesity or metabolic syndrome. Molecular Genetics and Metabolism, 2012, 107, 659-663.	1.1	69
98	Large neutral amino acids in the treatment of PKU: from theory to practice. Journal of Inherited Metabolic Disease, 2010, 33, 671-676.	3.6	69
99	Management of phenylketonuria in Europe: Survey results from 19 countries. Molecular Genetics and Metabolism, 2010, 99, 109-115.	1.1	94
100	Phenylketonuria management from an European perspective: A commentary. Molecular Genetics and Metabolism, 2010, 100, 107-110.	1.1	5
101	Phenylketonuria. Lancet, The, 2010, 376, 1417-1427.	13.7	854
102	Hereditary tyrosinemia type I: A new clinical classification with difference in prognosis on dietary treatment. Hepatology, 1994, 20, 1187-1191.	7.3	172